首页|基于改进孪生网络的小样本人脸识别方法与系统设计

基于改进孪生网络的小样本人脸识别方法与系统设计

扫码查看
文章针对人脸识别在高校等大型组织中数据集为多类小样本的情况,提出一种基于改进孪生网络的人脸识别方法以此来解决小样本识别问题.在参考原始孪生网络在不同小样本工程中的应用情况下,通过在特征提取部分添加SE注意力机制,使用马氏距离优化距离函数及分类器构建出新的改进孪生网络,并设计相应的人脸识别系统.之后在AT&T数据集上进行训练,改进后的网络模型在相应测试集上达到了 99.55%的准确率,相比于原始孪生网络及ResNet18、VGG16 等传统模型框架,模型准确率分别提升了 1~5 个百分点.实验证明了提出方法具有较高的精度和鲁棒性.
Small Sample Face Recognition Method and System Design Based on Improved Siamese Network
In this paper,a face recognition method based on improved twin network is proposed to solve the problem of small sample recognition in view of the situation that the data set of face recognition in universities and other large organizations is multiple classes and small samples.By referring to the application of original twin network in different small sample projects,a new improved twin network is constructed by adding SE attention mechanism to feature extraction,using Mahalanobis distance to optimize distance function and classifier,and the corresponding face recognition system is designed.After the training on the AT&T data set,the improved network model achieved 99.55%accuracy in the corresponding test set.Compared with the original twin network and the traditional model framework such as ResNet18 and VGG16,the model accuracy was increased by 1 to 5 percentage points respectively.Experiments show that the proposed method has high accuracy and robustness.

siamese networkface recognitionattention mechanismssmall sample learning

林泽强、汪思文

展开 >

上海应用技术大学 理学院,上海 201418

孪生网络 人脸识别 注意力机制 小样本学习

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(1)
  • 1
  • 3