首页|基于改进GoogLeNet卷积网络的人脸面部表情识别方法

基于改进GoogLeNet卷积网络的人脸面部表情识别方法

扫码查看
针对当前使用CNN进行表情识别的不足,文章提出一种新的基于改进GoogLeNet的人脸面部表情识别方法.该技术通过降低了不同层的卷积核的维数,提取了面部特征信息,并通过对GoogLeNet网络结构进行优化,精简了加深学习深度的Inception模块,使其网络结构得到了优化,从而降低了参数量,运行效率进一步得到改善.最后收集了有关人脸面部表情更全面的特征信息,分别在JAFFE、CK+和FER2013 三个数据集验证了文章所提出的方法.实验结果表明,在满足时效性要求的前提下,改进方案的准确度达到97.53%,改进方法具有很好的泛化性和鲁棒性.
Facial Expression Recognition Based on Improved GoogLeNet Convolution Neural Network
In view of the shortcomings of the current use of CNN for facial expression recognition,this paper proposes a new facial expression recognition method based on improved GoogLeNet.This method reduces the dimension of convolution kernels in different layers,extracts facial features,and simplifies the Inception module that deepens the learning depth by improving the GoogLeNet network,which optimizes the network structure,reduces the amount of parameters,and further improves the operation efficiency.Finally,more comprehensive information about facial expression features is obtained,and the method proposed in this paper is verified in three data sets:JAFFE,CK+and FER2013.The experimental results show that the accuracy of the improved scheme reaches 97.53%on the premise of meeting the requirements of timeliness,the improved method have good generalization and robustness.

expression recognitiondeep learningconvolution neural networkimage classification

许梦珍、张静、彭鸿滨

展开 >

沈阳化工大学,辽宁 沈阳 110142

营口理工学院,辽宁 营口 115100

表情识别 深度学习 卷积神经网络 图像分类

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(1)
  • 1
  • 2