首页|基于YOLOv5的行人检测方法研究

基于YOLOv5的行人检测方法研究

扫码查看
针对YOLOv5 在检测行人时容易出现漏检目标及检测精度低的问题,提出一种改进YOLOv5 网络的行人检测模型.首先,主干网络使用SPD(Space-to-Depth)模块和Ghost卷积组合构造的SPD-GConv模块进行下采样,减少细粒度特征信息的损耗.其次,通过增加小尺寸检测层,增强模型的多尺度检测能力.然后,使用α-EIoU损失函数替换原始CIoU损失函数,提高行人目标定位准确度.使用Crowdhuman数据集进行训练和测试,实验结果表明,所提出算法比原始算法的召回率和平均精度值分别提高了 4.7%和 3.5%,能够有效提高远距离目标和密集场景下行人检测的准确率.
Research on Pedestrian Detection Method Based on YOLOv5
Aiming at the problems that YOLOv5 is prone to missing targets and low detection accuracy when detecting pedestrians,an improved pedestrian detection model based on YOLOv5 network is proposed.First of all,the backbone network uses the SPD-GConv module constructed by the combination of SPD(Space-to-Depth)module and Ghost convolution for downsampling to reduce the loss of fine-grained feature information.Secondly,the multi-scale detection ability of the model is enhanced by adding small size detection layer.Then,the original CIoU loss function is replaced by α-EIoU loss function to improve the accuracy of pedestrian target location.The Crowdhuman dataset is used for training and testing.The experimental results show that the recall rate and average accuracy of the proposed algorithm are 4.7%and 3.5%higher than those of the original algorithm,respectively,which can effectively improve the accuracy of pedestrian detection in remote targets and dense scenes.

pedestrian detectionYOLOv5SPD-GConvmulti-scale detectionloss function

刘嘉泽、王超、生龙

展开 >

河北工程大学 信息与电气工程学院,河北 邯郸 056000

河北省安防信息感知与处理重点实验室,河北 邯郸 056000

行人检测 YOLOv5 SPD-GConv 多尺度检测 损失函数

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(1)
  • 4