首页|基于拉曼光谱和P-CNN的杏仁产地鉴别研究

基于拉曼光谱和P-CNN的杏仁产地鉴别研究

扫码查看
不同产地的杏仁因口感及营养价值的不同而造成价格差异明显,如何实现杏仁产地鉴别是目前促进杏仁产业发展的关键因素.利用拉曼光谱仪进行杏仁的拉曼光谱图测定,并结合LabSpec分析软件对原始拉曼光谱进行基线矫正处理,再将处理后拉曼光谱结合一维轻便卷积神经网络(1D P-CNN)对 7 种杏仁进行判别分析.构建的包含卷积层conv1、池化层pool1、卷积层conv2、池化层pool2、全连接层fc1 和fc2 的 1D P-CNN模型准确率、召回率和F值均可达到99.3%.为验证分类器的鲁棒性,在不同噪声场景下使用逻辑回归模型(LR)、随机森林模型(RF)、贝叶斯网络模型(NB)和P-CNN四种不同分类器鉴别杏仁拉曼光谱的情况,P-CNN准确率比其他三种模型的准确率高,为杏仁产地鉴别研究提供更为准确、有效的分析方法.
Almond Origin Identification Based on Raman Spectroscopy and Portable Convolutional Neural Network
The taste and nutritional value of almonds from different producing areas are different,so the price difference is obvious.So,it is the key factor to promote the development of the almond industry how to realize almond origin identification.The Raman spectra of almonds were measured by Raman spectrometer,and the baseline of Raman spectra was corrected by LabSpec software.Then,we analyzed 7 kinds of almonds by post-processing Raman spectroscopy combined with 1D P-CNN.The model 1D P-CNN we constructed includes convolution layer conv1,pooling layer pool1,convolution layer conv2,pooling layer pool2,and full connection layers fc1 and fc2.The accuracy,recall,and F value of our model can reach 99.3%.To verify the robustness of the classifier,four different classifiers,namely,logistic regression model(LR),random forest model(RF),Bayesian network model(NB),and P-CNN,were used to identify the Raman spectra of almonds in different noise scenarios.In the test,it was found that the accuracy of the P-CNN model was higher than that of the other three models under different signal-to-noise ratios.It provides a more accurate and effective analytical method for the identification of the almond origin.

almondraman spectraP-CNNidentification of almond origin

李哲、高娇娇、杨楠、赵素梅、梁丽娟

展开 >

邢台学院 物理与电子工程学院,河北 邢台 054000

杏仁 拉曼光谱 P-CNN 产地鉴别

国家自然科学基金资助项目邢台学院省级教学改革项目邢台市重点研发计划自筹项目邢台市横向课题

521020782018GJJG5192020ZC005XYH2022025

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(1)
  • 11