首页|结直肠病变目标检测算法研究

结直肠病变目标检测算法研究

扫码查看
目前肠镜检查主要通过医师肉眼观察判断,导致对病变处存在误诊、漏诊等问题.针对以上问题,提出一种基于YOLOv5s的改进算法.首先,使用Silu替换Relu,加入了结构重参数化思想对RepVGG网络进行改进,并将改进后的RepVGG网络替代CSPDarknet53 作为算法的Backbone,有效地抑制了梯度消失现象,加快了模型推理速度;最后,为提升对小目标的灵敏度,将YOLOv5s的Head阶段进行改进,将其增加为四路检测机制.实验结果表明,改进后的算法可以有效地协助医师及时判断病情和病灶抓取.
Research on Objective Detection Algorithm of Colorectal Lesions
At present,colonoscopy is mainly judged by the naked eye of physicians,which leads to problems such as misdiagnosis and missed diagnosis of the lesions.To solve these problems,an improved algorithm based on YOLOv5s is proposed.Firstly,Silu is used to replace Relu,and the idea of structural reparameterization is added to improve the RepVGG network,and the improved RepVGG network replaces CSPDarknet53 as the Backbone of the algorithm,which effectively inhibits the phenomenon of gradient disappearance and speeds up the model reasoning speed.Finally,in order to improve the sensitivity to small targets,the Head stage of YOLOv5s was improved and added as a four-way detection mechanism.The experimental results show that the improved algorithm can effectively assist physicians to diagnose the disease condition and capture the lesion in time.

target detectioncolorectal lesionsYOLOv5sSiluRepVGG

杨宝通

展开 >

沈阳航空航天大学 电子信息工程学院,辽宁 沈阳 110136

目标检测 结直肠病变 YOLOv5s Silu RepVGG

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(1)
  • 8