首页|基于ResNet34卷积神经网络的垃圾分类识别小程序

基于ResNet34卷积神经网络的垃圾分类识别小程序

扫码查看
人类社会的生产力水平正在以指数级提升,导致垃圾数量疯涨,因此当下如何处理大量的垃圾成为一个棘手的问题.在大量堆积的垃圾中既有可以回收利用的可回收垃圾,也有能造成污染的有害垃圾,如果对其不加以区分就丢弃,对于资源是一种浪费.为了解决在垃圾分类过程中出现的错误分类的问题,构建了基于ResNet34 卷积神经网络的垃圾分类识别模型.根据垃圾分类的需求对现有的网络模型做出了相应的调整,优化模型主要参数的同时采用了迁移学习的方式训练模型使其在测试集上的准确率达到了 87%.选择与微信小程序结合,向ResNet34 模型导入数据集并训练 40 种垃圾类别,同时通过Https协议远程调用服务器上运行的模型,从而在小程序上实现对垃圾的快速精准分类.
Garbage Classification Recognition Wechat Applets Based on ResNet34 Convolutional Neural Network
The productivity level of human society is increasing exponentially,resulting in a skyrocketing amount of garbage,so how to deal with a large amount of garbage has become a tricky problem.At the same time,there are recyclable garbage that can be recycled and harmful garbage that can cause pollution.If it is discarded without distinction,it is a waste of resources.In order to solve the problem of misclassification in the garbage classification process,a garbage classification recognition model based on ResNet34 convolutional neural network is constructed.According to the needs of garbage classification,the existing network model was adjusted accordingly,the main parameters of the model were optimized,and the model was trained by transfer learning,so that the accuracy of the test set reached 87%.Select and combine with Wechat applet to import datasets and train 40 garbage categories to the ResNet34 model,and remotely call the model running on the server through the Https protocol,so as to achieve fast and accurate garbage sorting on the Wechat applet.

garbage sortingResNet34Wechat applet

李玉信、王嘉欣、刘力军

展开 >

大连民族大学 理学院,辽宁 大连 116650

垃圾分类 ResNet34 微信小程序

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(2)
  • 7