首页|基于深度学习的金属表面缺陷识别方法

基于深度学习的金属表面缺陷识别方法

扫码查看
针对金属产品表面缺陷识别过程中,缺陷类型多样、大小形态各异等问题,提出了一种基于多尺度残差卷积网络的深度学习模型.该网络以ResNet50 作为特征编码器提取具有不同分辨率的特征图以捕获多尺度特征信息,从而提高其识别不同尺寸缺陷的能力;同时采用多层感知机(Multi-Layer Perceptron,MLP)进行多尺度特征的自适应融合,将浅层卷积获取的图像纹理和边界等特征和深度卷积提取的复杂语义特征信息进行信息交互和特征细化,以提升网络模型识别性能.实验结果表明,文章所提出算法在NEU-DET数据集上准确率达到了 98.06%,相比其他模型具有更高的识别精度.
A Deep Learning-based Method for Metal Surface Defect Recognition
Aiming at the problems of various defect types and variable sizes and shapes in the surface defect recognition of metal products,this paper proposes a deep learning model based on multi-scale residual convolutional network.First,ResNet50 is used as a feature encoder to extract feature maps with different resolutions to capture multi-scale information,thereby improving its ability to identify defects of different sizes;Then,a multi-layer perceptron(MLP)is applied to adaptively fuse multi-scale features,where the features such as image textures and boundary information obtained by shallow convolutions and complex semantic information extracted by deep convolutions are used for information interaction and feature refinement to improve the recognition performance of the network.The experimental results show that the proposed algorithm achieves an accuracy rate of 98.06%on the NEU-DET dataset,which has higher recognition accuracy than other models.

deep learningdefect recognitionmulti-scale featuresMulti-Layer Perceptron

盛承光

展开 >

深圳信息职业技术学院 应用外语学院,广东 深圳 518172

深度学习 缺陷识别 多尺度特征 多层感知机

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(2)
  • 11