首页|基于ZOA与CNN的电梯故障诊断

基于ZOA与CNN的电梯故障诊断

扫码查看
采用ZOA-CNN方法对电梯轴承故障进行诊断,旨在通过分析电梯运行过程中的轴承振动信号,进一步判断电梯是否存在故障.卷积神经网络(Convolutional Neural Network,CNN)具有出色的数据特征提取能力,为电梯轴承故障诊断提供了有力支持.同时结合斑马优化算法(Zebra Optimization Algorithm,ZOA)对CNN模型参数进行优化,以提升诊断性能.研究结果表明,该方法在轴承电梯故障诊断方面取得了显著的成果,其诊断准确率达到了99.75%,明显高于传统故障诊断方法对电梯故障的正确率.
Fault Diagnosis of Elevator based on ZOA and CNN
This study used the ZOA-CNN method to diagnose elevator bearing faults,aiming to further determine whether there are faults in the elevator by analyzing the bearing vibration signals during elevator operation.Convolutional neural network(CNN)has excellent automatic feature extraction ability,which provides strong support for elevator bearing fault diagnosis.Meantime,the paper combined the Zebra Optimization Algorithm(ZOA)to optimize the CNN model parameters to improve diagnostic performance.The research results show that this method has achieved significant results in diagnosing elevator bearing faults,with a diagnostic accuracy of 99.75%,which is significantly higher than the correct rate of traditional fault diagnosis methods for elevator faults.

elevator failureConvolutional Neural Network(CNN)Zebra Optimization Algorithm(ZOA)fault diagnosis

王赛男、柏智、杨云涛

展开 >

湖南电气职业技术学院 电梯工程学院,湖南 湘潭 411101

湖南大学 物理与微电子科学学院,湖南 长沙 410082

电梯故障 卷积神经网络 斑马优化算法 故障诊断

湖南省自然科学基金课题湖南省自然科学基金课题

2022JJ600252021JJ60024

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(2)
  • 12