首页|基于改进boxlevelset的叶片显微图像气孔分割方法

基于改进boxlevelset的叶片显微图像气孔分割方法

扫码查看
深度学习技术已被用于气孔分割任务.然而,训练数据的标注是机械且耗时的人工过程,特别是在数据集比较大的时候.为了减少标注时的工作量,研究提出一种基于弱监督模型Boxlevelset的气孔分割方法.将原模型的特征提取网络ResNet50 替换为ResNest50,并且在特征提取过程中引入CBAM模块.以黑杨气孔为研究对象,该方法可有效分割出气孔,F1 得分为 79.89.所提出的方法减少了标注训练数据所需的时间,同时保证了分割精度,从而显著减少了训练气孔分割网络所需的工作量.
Automatic Segmentation of Stomata in Leaf Microscopic Images Using Box-Supervised Instance Segmentation
Deep learning techniques have been used for stomatal segmentation tasks.However,labeling of training data is a mechanical and time-consuming manual process,especially when the data set is relatively large.Therefore,this study proposes a stomatal segmentation method based on the weakly supervised model Boxlevelset.The feature extraction network ResNet50 of the original model is replaced with ResNest50,and the CBAM module is introduced in the feature extraction process.Taking black poplar stomata as the research object,this method can effectively segment the stomata,with an F1 score of 79.89%.The proposed method reduces the time required to annotate training data while ensuring segmentation accuracy,thereby significantly reducing the workload required to train the stomatal segmentation network.

leaf stomata segmentationneural networksweak supervisionattention mechanism

郑禹曦、黄建平

展开 >

东北林业大学 计算机与控制学院,黑龙江 哈尔滨 150040

叶片气孔分割 神经网络 弱监督 注意力机制

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(2)
  • 20