首页|长江上海段异常船舶识别研究

长江上海段异常船舶识别研究

扫码查看
针对长江上海段的船舶异常问题,提出了一种基于多元大数据技术的判断模型.现有异常船舶识别方法存在数据孤岛难题,难以发现有效关联关系,基于此,研究长江上海段异常船舶识别方法.首先,基于多元大数据技术整合船舶航迹信息、人船关联信息等多个数据源,并利用粒子群优化模糊神经网络实现异常船舶识别.实验结果表明,设计方法的识别精度最高达到了 93%,具有一定的实用性.
Study on the Abnormal Vessel Identification in the Shanghai Section of the Yangtze River
This study proposes a judgment model based on multiple big data technology for the problem of ship ships in Shanghai section of the Yangtze River.The existing abnormal ship identification method has the problem of data island,and it is difficult to find the effective correlation.In this regard,the identification method of abnormal ship in the Shanghai section of the Yangtze River is studied.First of all,integrate multiple data sources such as ship track information and human-ship correlation information based on multi-big data technology,and optimize fuzzy neural network based on particle swarm.The experimental results show that the identification accuracy of the design method is 93%,which has certain practicability.

multivariate big dataparticle swarm optimization and fuzzy neural networkabnormal ship identification

赖俊东、刘玢炜、许彦旻、杨金龙

展开 >

上海烟草集团有限责任公司,上海 200082

江南大学 人工智能与计算机学院,江苏 无锡 214122

多元大数据 粒子群优化模糊神经网络 异常船舶识别

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(5)
  • 6