首页|基于EC-CSP和双路特征融合的红外无人机目标检测

基于EC-CSP和双路特征融合的红外无人机目标检测

扫码查看
针对红外无人机目标检测的实时性与准确性需求不断提升的问题,提出基于EC-CSP和双路特征融合的红外无人机目标检测算法.首先,提出结合ECA-CBAM注意力机制的CSP模块(Efficient Channel Attention-Convolutional Block Attention Module-CSP,EC-CSP),使网络能关注更重要的区域.其次,提出包含 5×5、9×9像素大小最大池化的STM(Small Target Maxpool)模块,抑制背景特征对小尺度目标特征的干扰;最后,提出融合1×1与3×3基本卷积操作的全局特征提取(Global Feature Extracion,GFE)模块,并与STM模块组成双路特征融合(Dual Path Feature Fuasion,DPFF)模块,提高全局特征和局部特征的融合能力.实验结果表明,新算法取得了良好的实验效果.
Infrared UAV Target Detection Based on EC-CSP and Dual Path Feature Fusion
Aiming at the problem that the real-time and accuracy requirements of infrared UAV target detection are constantly improving,an infrared UAV target detection algorithm based on EC-CSP and dual feature fusion was proposed.Firstly,a CSP module(Efficient Channel Attention-Convolutional Block Attention Module-CSP,EC-CSP)combined with the ECA-CBAM attention mechanism is proposed to enable the network to focus on more important areas.Secondly,a Small target maxpool(STM)module with 5×5 and 9×9 pixel size maximum pooling is proposed to suppress the interference of background features on small-scale target features.Finally,a Global Feature Extracion(GFE)module that integrates 1×1 and 3×3 basic convolution operations is proposed and combined with the STM module to form a Dual Path Feature Fusion(DPFF)module to improve the fusion ability of global features and local features.The experimental results show that the new algorithm has achieved good experimental results.

YOLOv5sinfrared UAVECA-CBAMEC-CSPdual path feature fusion

李祥、李昊瞳、周敏敏

展开 >

河北工程大学 信息与电气工程学院,河北 邯郸 056038

YOLOv5s 红外无人机 ECA-CBAM EC-CSP 双路特征融合

河北省自然科学基金面上项目河北省自然科学基金面上项目

F2021402009A2020402013

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(5)
  • 12