首页|基于自监督图注意力网络的物联网入侵检测

基于自监督图注意力网络的物联网入侵检测

扫码查看
针对当前物联网入侵检测领域中流量数据不平衡且模型训练过度依赖标签的问题,提出了一种基于自监督图注意力网络的入侵检测方法.采用掩码自编码方式,提高模型对图结构数据的学习表征能力,从无标签数据中挖掘有用信息;改进图注意力网络,实现对节点和边特征的自适应学习,使模型更好地提取样本特征;利用多层感知器完成对攻击样本的多分类任务.在UNSW-NB15 和ToN-IoT数据集上的实验结果显示,该方法在所有类别上的平均F1 分数分别达到了 99.04%和 99.76%,能够有效完成入侵检测任务,且具有较高的稳健性.
Internet of Things Intrusion Detection Based on Self-supervised Graph Attention Network
Aiming at the current problems of imbalanced network flow data and over-reliance on labels in the field of intrusion detection for the Internet of Things,an intrusion detection method based on a self-supervised graph attention network is proposed.By employing a masked autoencoder,the model's learning representation capability for graph-structured data is enhanced,extracting useful information from unlabeled data.Additionally,the graph attention network is improved adaptively learning features from nodes and edges,allowing the model to better extract sample features.Finally,a multi-layer perceptron is utilized for the multi-class classification task of attack samples.Experimental results on the UNSW-NB15 and ToN-IoT datasets demonstrate that the average F1 scores across all categories achieved by this method are 99.04%and 99.76%,respectively,indicating its effectiveness in completing intrusion detection tasks with high robustness.

self-supervised learningpre-traininggraph attention networkgraph representation learningintrusion detectionmulti-classification

旷远有

展开 >

北方工业大学 信息学院,北京 100144

自监督学习 预训练 图注意力网络 图表示学习 入侵检测 多分类

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(5)
  • 3