首页|基于深度学习的马王堆汉墓简帛文字识别研究

基于深度学习的马王堆汉墓简帛文字识别研究

扫码查看
通过构建马王堆简帛文字识别模型,可以对同时期出土的简帛进行文字识别,提高简帛研究人员的文字识别效率,为构建古文字手写识别模型提供研究思路和技术路线.使用BAGAN-GP生成对抗网络,结合传统数据增强方法对原始数据集进行数据增强,使用 5 种图像分类网络开展马王堆简帛手写文字识别的对比实验.ResNet网络在扩充后的平衡数据集上训练的模型识别准确率达 98.589%,比原始数据集训练的模型准确率提高了 9.181%.对比实验中,EfficientNet V2 small表现最优,准确率达 99.048%.BGAN-GP生成模型与传统数据增强方法结合的方式能够很好地适用于马王堆简帛手写文字数据集的扩充.扩充后的平衡数据集在不同的图像分类网络上都可以取得很高的识别准确率.结合迁移学习方式,导入预训练权重,模型的训练可以更快地收敛,准确率也相应提升.
Research on Recognition of Bamboo and Silk Characters in Mawangdui Han Tomb Based on Deep Learning
By constructing a model for text recognition of the Mawangdui bamboo slips,it can be used to recognize the text of the bamboo slips unearthed at the same time,improving the efficiency of text recognition for researchers of bamboo slips.In addition,it also provides research ideas and technical routes for building ancient handwritten character recognition.The original dataset was enhanced by using the BAGAN-GP generative adversarial network combined with the traditional data augmentation method,and then Five image classification networks were used to carry out a comparative experiment on Mawangdui handwriting text recognition.The recognition accuracy of the model trained on the enriched balanced dataset is 98.589%,which is 9.181%higher than that of the model trained on the original dataset.In the comparison experiment,EfficientNet V2 small performed the best,with an accuracy rate of 99.048%.The combination of BGAN-GP generative model and traditional data augmentation method can be well applied to the expansion of Mawangdui simple handwritten text dataset.The enriched balanced dataset can achieve high recognition accuracy on different image classification networks.Combined with the transfer learning method and the introduction of pre-training weights,the training of the model can converge faster,and the accuracy can also be improved.

deep learningBAGAN-GPResNetdata augmentationtransfer learning

盛威、彭欢、卢彦杰、刘伟

展开 >

湖南中医药大学 信息科学与工程学院,湖南 长沙 410208

深度学习 BAGAN-GP ResNet 数据增强 迁移学习

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(6)