首页|基于轻量型YOLOv7-TMC网络的疲劳驾驶状态检测方法

基于轻量型YOLOv7-TMC网络的疲劳驾驶状态检测方法

扫码查看
为了在移动端更方便地部署,需要进一步实现疲劳驾驶检测模型的轻量化,因此,提出一种新的轻量级网络算法YOLOv7-TMC,即YOLOv7-Tiny结合MobileNet和CBAM,应用于疲劳驾驶状态检测.实验结果表明,提出的算法在精确度上有明显的提升,同时检测速度更快,能够快速准确地捕捉到驾驶员的疲劳驾驶行为,为后续的智能驾驶提供了检测精度更高、速度更快的行车辅助,具有重要的应用价值.
Fatigue Driving State Detection Method Based on Lightweight YOLOv7-TMC Network
In order to be more conveniently deployed on mobile devices,the lightweighting of fatigue driving detection models needed to be further implemented.Therefore,a new lightweight network algorithm,YOLOv7-TMC,which combines YOLOv7-Tiny with MobileNet and CBAM,was proposed for fatigue driving state detection.Experimental results indicated that the algorithm proposed in this paper had a significant improvement in accuracy and a faster detection speed,enabling the rapid and accurate capture of fatigue driving behavior by drivers.This provided a driving assistance system with higher detection accuracy and faster speed for subsequent intelligent driving,possessing important application value.

fatigue drivingdeep learningYOLOv7light weight

马明

展开 >

沈阳航空航天大学 电子信息工程学院,辽宁 沈阳 110136

疲劳驾驶 深度学习 YOLOv7 轻量化

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(6)