首页|深度学习在视觉SLAM前端的应用分析

深度学习在视觉SLAM前端的应用分析

扫码查看
围绕深度学习在视觉SLAM前端的应用展开分析,以期为今后深度学习在视觉SLAM前端中的应用提供有益启示.首先介绍了视觉SLAM,然后详细阐述了深度学习在视觉SLAM前端的应用,包括预处理、特征提取、数据关联和位姿优化等方面.接着,深入剖析深度学习与传统技术相比的优缺点以及在视觉SLAM前端的应用挑战.最后,对未来的发展趋势进行了预测,包括轻量化网络结构的设计、特征提取、数据关联方法、端到端训练模式的发展,以及多模态信息融合应用等方面.
Application Analysis of Deep Learning in Visual SLAM Front-end
The analysis was conducted focusing on the application of deep learning in the front-end of visual SLAM,aiming to provide beneficial insights for future applications of deep learning in this field.Firstly,visual SLAM was introduced.Subsequently,the application of deep learning in the front-end of visual SLAM was elaborated in detail,including preprocessing,feature extraction,data association,and pose optimization.Then,an in-depth analysis was carried out on the advantages and disadvantages of deep learning compared to traditional techniques,as well as the challenges faced in its application in the front-end of visual SLAM.Finally,predictions were made about future development trends,including the design of lightweight network structures,feature extraction,data association methods,the evolution of end-to-end training modes,and the application of multimodal information fusion.

deep learningvisual SLAMposition estimation

王凌云

展开 >

凯里学院 大数据工程学院,贵州 凯里 556011

深度学习 视觉SLAM 位姿估计

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(6)