首页|基于查询图生成的知识图谱复杂问答方法研究

基于查询图生成的知识图谱复杂问答方法研究

扫码查看
为了研究知识图谱复杂问答技术,解决知识图谱复杂问答准确率不高的问题,提出了一种基于神经网络的知识图谱复杂问答模型QGGNet.该模型通过编码器-解码器模型生成抽象查询图(AQG),并引入图神经网络(Graph Transformer)来学习抽象查询图的向量表示;采用注意力机制(Attention Mechanism)来聚合邻居节点信息更新查询图向量表示,并引入Bert排序模型对生成的所有查询图进行排序打分.为验证所提出方法的有效性,设计了对比试验.实验结果表明,该模型评价值优于其他模型,基于查询图生成的方法在两个知识图谱问答(KGQA)数据集上产生有竞争力的实验结果,能够较好地应用于知识图谱复杂问答领域.
Research on the Knowledge Graph Complex Q&A Method Based on Query Graph Generate
In order to study the knowledge graph complex question answering technology and solve the problem that the accuracy of knowledge graph complex Q&A is not high,a knowledge graph complex Q&A model QGGNet based on neural network was proposed.The model used encoder-decoder model to generate abstract query Graph(AQG),and introduced Graph Transformer to learn the vector representation of AQG.The Attention Mechanism was used to aggregate neighbor node information to update the vector representation of the query graph,and Bert ranking model was introduced to sort and score all the generated query graphs.In order to verify the effectiveness of the proposed method,a comparative experiment was designed.The experimental results showed that the evaluation value of this model was better than other models,and the method based on query graph generation could produce competitive experimental results on two knowledge graph question answering(KGQA)datasets,and could be well applied to the field of knowledge graph complex Q&A.

NLPknowledge graphcomplex Q&Aquery graph

李萌、刘爽、毕文洁

展开 >

大连民族大学 计算机科学与工程学院,辽宁 大连 116602

自然语言处理 知识图谱 复杂问答 查询图

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(6)