首页|基于空-谱信息重建的开放集高光谱图像分类

基于空-谱信息重建的开放集高光谱图像分类

扫码查看
高光谱遥感图像的精准分类在民用和军用领域都有很重要的应用.尽管基于深度学习的方法在高光谱图像分类中取得了成效,但在开放集环境下,处理未知对象时缺乏鲁棒性和泛化性.为了提高高光谱图像分类方法的鲁棒性,同时保持已知类的分类精度,构建了一种在开放环境下同时进行光谱特征重建、空间特征重建和像素级分类的光谱空间重建框架.通过重建高光谱图像的光谱和空间特征,提高特征表示能力,保留有助于拒绝未知类和区分已知类的光谱空间信息.实验验证了该方法对开放集高光谱图像分类的有效性.
Open-Set Hyperspectral Image Classification Based on Spatial-Spectral Information Reconstruction
The precise classification of hyperspectral remote sensing images has significant applications in both civilian and military domains.Despite the success of deep learning-based methods in hyperspectral image classification,they often lack robustness and generalization when dealing with unknown objects in open-set environments.To enhance the robustness of hyperspectral image classification methods while maintaining the accuracy of known classes,this paper proposes the spectral-spatial information reconstruction framework that simultaneously performs spectral feature reconstruction,spatial feature reconstruction,and pixel-level classification in open-set environments.By reconstructing the spectral and spatial features of hyperspectral images,the framework enhances feature representation capabilities,preserving spectral-spatial information crucial for rejecting unknown classes and distinguishing known classes.Experimental results validate the effectiveness of the proposed approach in open-set hyperspectral image classification.

hyperspectral image classificationdeep learningopen-set classification

郑鹏超、胡梦怡、徐沁

展开 >

安徽大学 计算机科学与技术学院,安徽 合肥 230601

高光谱图像分类 深度学习 开放集分类

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(6)