首页|基于迁移学习的改进ResNet网络应用研究

基于迁移学习的改进ResNet网络应用研究

扫码查看
针对传统的ResNet网络在处理不同研究领域的图像分类任务时,可能存在的性能较差和泛化能力较弱等问题,提出了一种基于迁移学习的改进ResNet网络模型TA-ResNet50,通过引入通道和空间注意力模块,以增强模型对关键信息的关注度.对全连接层进行了优化设计,并引入了Dropout层,以减少过拟合的风险.并应用迁移学习技术来提高模型训练速度和泛化能力.此外,还为验证TA-ResNet50 模型的有效性,分别在GTSRB、CIFAR-10、CIFAR-100 数据集上进行了一系列实验.实验结果表明,相比传统的ResNet模型,TA-ResNet50 在这些数据集上的图像识别精度分别提高了12.73%、12.51%、10.98%.此外,TA-ResNet50模型还表现出了更强的鲁棒性和泛化能力.这为深度神经网络中迁移学习的应用研究提供了有益的参考.
Research on Application of Improved ResNet Network Based on Transfer Learning
In addressing the potential performance issues and weak generalization capabilities of traditional ResNet networks in image classification tasks across various research domains,this study proposes an improved ResNet model,TA-ResNet50,based on transfer learning.The model incorporates channel and spatial attention modules to enhance its focus on critical information.Optimization designs are applied to the fully connected layers,and a Dropout layer is introduced to mitigate the risk of overfitting.Transfer learning techniques are employed to accelerate model training and improve generalization.To validate the effectiveness of the TA-ResNet50 model,a series of experiments are conducted on the GTSRB,CIFAR-10,and CIFAR-100 datasets.Experimental results demonstrate that compared to traditional ResNet models,TA-ResNet50 achieves respective increases of 12.73%,12.51%,and 10.98%in image recognition accuracy on these datasets.Additionally,the TA-ResNet50 model exhibits enhanced robustness and generalization capabilities.This study provides valuable insights for the application of transfer learning in deep neural networks.

transfer learningResNet50attention mechanismimage classification

孙正本、宁靖、王亮

展开 >

沈阳化工大学 计算机科学与技术学院,辽宁 沈阳 110142

辽东学院 信息工程学院,辽宁 丹东 118001

沈阳化工大学 辽宁省化工过程工业智能化技术重点实验室,辽宁 沈阳 110142

迁移学习 ResNet50 注意力机制 图像分类

2024

电脑与信息技术
中国电子学会,湖南省电子研究所

电脑与信息技术

影响因子:0.256
ISSN:1005-1228
年,卷(期):2024.32(6)