首页|基于多特征组合的锂离子电池SOH估计

基于多特征组合的锂离子电池SOH估计

扫码查看
准确估计锂离子电池的健康状态(SOH)是保证储能系统安全稳定运行的重要前提.提高SOH估计精度的关键在于合理选择能够反映锂离子电池SOH的健康特征.通过分析锂离子电池恒压充电阶段的电流特性,从恒压充电阶段电流曲线数据中提取了包含电流曲线首末点斜率、标准差和平均值的健康特征组合.为验证所提出特征组合的有效性,设计了基于核岭回归(KRR)和支持向量回归(SVR)的SOH估计模型,并完成了模型验证.实验结果表明,所提特征组合在不同模型下均能实现对SOH的高精度估计,具有良好的模型适应性.
SOH Estimation of Lithium-ion Batteries Based on Multiple Feature Combinations
Accurately estimating the state of health(SOH)of lithium-ion batteries is a crucial prerequisite for ensuring the safe and stable operation of energy storage systems.The key to improving the accuracy of SOH estimation lies in the rational selection of health characteristics that can effectively reflect the state of health of lithium-ion batteries.By analyzing the current characteristics of lithium-ion batteries during the constant voltage charging stage,a healthy combination of features containing the slope of the first and last points of the current curve,the standard deviation,and the mean value were extracted from the current curve data during the constant voltage charging stage.To validate the effectiveness of the proposed feature combination,SOH estimation model based on kernel ridge regression(KRR)and support vector regression(SVR)was designed,and model validation was successfully completed.The experimental results demonstrate that the proposed feature combination can achieve high-precision SOH estimation across different models,exhibiting excellent model adaptability.

lithium-ion batterystate of health(SOH)estimationconstant voltage charging stagekernel ridge regression(KRR)support vector regression(SVR)

吴涵、黄兴华、乔振东、范元亮、朱俊伟、陈金玉

展开 >

国网福建省电力有限公司电力科学研究院,福建 福州 350007

福建省高供电可靠性配电技术企业重点实验室,福建 福州 350007

广东工业大学自动化学院,广东 广州 510006

国网福建省电力有限公司莆田供电公司,福建 莆田 351199

展开 >

锂离子电池 健康状态估计 恒压充电阶段 核岭回归 支持向量回归

2025

电气传动
天津电气传动设计研究所 中国自动化学会

电气传动

影响因子:0.507
ISSN:1001-2095
年,卷(期):2025.55(1)