首页|基于DBSCAN-PCA和改进自注意力机制的光伏功率预测

基于DBSCAN-PCA和改进自注意力机制的光伏功率预测

扫码查看
光伏电站功率数据存在随机性和波动性的特征,研究精准的光伏电站功率预测模型成为未来电力发展中灵活的电力调度和管理的必要条件.对此提出一种基于混合DBSCAN聚类、PCA主成分分析和改进自注意力机制的光伏功率预测模型.首先采用DBSCAN聚类将分布较为分散和密集的历史数据进行分类,得到波动数据集和平稳数据集;其次利用PCA提取波动数据的主要成分序列,得到便于模型获得关键信息的时间序列;最后提取关键气象参数与具有感知上下文信息的改进自注意力机制模型进行互助式的动态建模.实验运用RMSE和MAE两个指标说明本文所提模型在每个季节下的平稳数据和波动数据都有较高的预测精度.
Photovoltaic Power Prediction Based on DBSCAN-PCA and Improved Self-attention Mechanism
The power data of photovoltaic(PV)power stations has the characteristic of randomness and volatility.Therefore,the accurate power prediction models for PV power stations are essiential for flexible power dispatching and management.This paper proposes a hybrid technology PV power prediction model based on DBSCAN cluste-ring,PCA principal component analysis and improved self-attention mechanism.Firstly,the DBSCAN clustering is used to classify the scattered and dense data to obtain the fluctuation data set and the stationary data set.Secondly,the PCA is used to extract the main component sequence of the fluctuation data to obtain the time series that is con-venient for the model to obtain key information.Finally,the key meteorological parameters are extracted to combine with the improved self attention mechanism model with perceptual context information for interactive dynamic model-ing.The comparative experiment shows that the stationary data and fluctuation data of the proposed model in each season have high prediction accuracy.

DBSCAN clusteringPCA analysisself-attention mechanismphotovoltaic power prediction

李祺彬、卢箫扬、林培杰、程树英、陈志聪

展开 >

福州大学物理与信息工程学院微纳器件与太阳能电池研究所,福建 福州 350116

DBSCAN聚类 PCA分析法 自注意力机制 光伏功率预测

福建省科技厅引导性基金资助项目福建省工信厅项目福建省自然科学基金面上项目福州市科技计划项目

2022H0008823180752021J015802021-P-030

2024

电气开关
沈阳电气传动研究所

电气开关

影响因子:0.281
ISSN:1004-289X
年,卷(期):2024.62(1)
  • 18