首页|基于迁移学习的光伏阵列复合故障诊断研究

基于迁移学习的光伏阵列复合故障诊断研究

扫码查看
针对户外运行的光伏阵列常见的复合故障问题,提出了一种融合残差网络与视觉Transformer的混合网络模型,并使用迁移学习方法对其优化,以提高故障诊断模型在复合故障场景下的可靠性.首先,从光伏阵列的静态I-V曲线和环境参数中提取有效特征作为输入,然后,利用仿真数据进行预训练,最后,通过迁移学习验证模型在诊断真实实验数据时的可靠性.实验结果表明,该混合模型在应对复合故障场景时具有较高的收敛速度和准确率.
Research on Photovoltaic Array Compound Fault Diagnosis Based on Transfer Learning
In response to the common compound fault issues in outdoor photovoltaic arrays,a hybrid network model combining residual networks and vision transformers have been proposed and optimized using transfer learning meth-ods to enhance the reliability of fault diagnosis models in compound fault scenarios.Firstly,effective features are ex-tracted from the static I-V curves and environmental parameters of the photovoltaic arrays as inputs.Then,the model is pre-trained using simulation data.Finally,the reliability of the model in diagnosing real experimental data is veri-fied through transfer learning.The experimental results indicate that this hybrid model exhibits a higher convergence speed and accuracy when dealing with compound fault scenarios.

photovoltaic arrayfault diagnosisI-V curvetransfer learning

王鑫、陈志聪、吴丽君

展开 >

福州大学物理与信息工程学院微纳器件与太阳能电池研究所,福建 福州 350108

光伏阵列 故障诊断 I-V曲线 迁移学习

2024

电气开关
沈阳电气传动研究所

电气开关

影响因子:0.281
ISSN:1004-289X
年,卷(期):2024.62(4)