首页|基于人工神经网络的配电网故障段识别和定位

基于人工神经网络的配电网故障段识别和定位

扫码查看
提出一种基于人工神经网络的配电网故障测距方法.为训练神经网络,从记录的继电器故障信号中提取一系列特定的特征,这些特性是通过对三相电流和序列进行小波变换并提取高频特性来获得的.由于故障发生时会产生高频,因此可以使用小波变换提取信号信息.经过小波变换后,可以使用统计学方法获得序列的小分量以及三相信号的熵,提取其中的隐藏特征,并将其单独呈现以训练神经网络.此外,由于所获得的用于神经网络训练的输入取决于故障角度、故障电阻和故障位置,因此应该选择训练数据,使得这些差异被适当地呈现,使得神经网络计算顺利进行.因此,选择信号处理函数、数据频谱以及随后的统计参数及其组合是非常重要的.最后,在实现神经网络后,可以估计故障截面、故障位置和故障电阻.仿真结果表明,神经网络对不同角度、不同位置、不同电阻的故障具有良好的性能.
Fault Segment Recognition and Localization in Distribution Networks Based on Artificial Neural Networks
This article proposes a method for fault location in distribution networks.The proposed method utilizes an artificial neural network.To train the neural network,a series of specific features are extracted from the recorded relay fault signals.These characteristics are obtained by performing wavelet transform on three-phase currents and sequences and extracting high-frequency characteristics.Due to the occurrence of high-frequency faults,wavelet transform can be used to extract signal information.After wavelet transform,statistical methods can be used to obtain the small components of the sequence and the entropy of the three-phase signal,extract hidden features,and present them separately for training the neural network.In addition,since the input obtained for neural network training strongly depends on the fault angle,fault resistance,and fault location,training data should be selected so that these differences are appropriately presented,so that the neural network does not face any recognition problems.There-fore,selecting signal processing functions,data spectra,and subsequent statistical parameters and their combinations are very important.Finally,after implementing the neural network,the fault cross-section,fault location,and fault re-sistance can be estimated.The simulation results show that the neural network has good performance for faults with different angles,positions,and resistances.

ANNdistribution networkfault identificationfault location

熊晓东、陈伟杰、朱祥瑞、黄彬彬、潘海萍

展开 >

国网浙江省电力有限公司浦江县供电公司,浙江 金华 322200

国网浙江宁海县供电有限公司,浙江 宁波 315600

人工神经网络 配电网 故障识别 故障定位

2024

电气开关
沈阳电气传动研究所

电气开关

影响因子:0.281
ISSN:1004-289X
年,卷(期):2024.62(4)