首页|China's poverty assessment and analysis under the framework of the UN SDGs based on multisource remote sensing data

China's poverty assessment and analysis under the framework of the UN SDGs based on multisource remote sensing data

扫码查看
Poverty has always been a global concern that has restricted human development.The first goal(SDG 1)of the United Nations Sustainable Development Goals(SDGs)is to eliminate all forms of poverty all over the world.The establishment of a scientific and effective localized SDG 1 evaluation and monitoring method is the key to achieving SDG 1.This paper proposes SDG 1 China district and county-level localization evaluation method based on multi-source remote sensing data for the United Nations Sustainable Development Framework.The temporal and spatial distribution characteristics of China's poverty areas and their SDG 1 evaluation values in 2012,2014,2016,and 2018 have been analyzed.Based on the SDGs global indicator framework,this paper first constructed SDG 1 China's district and county localization indicator system and then extracted multidimensional feature factors from nighttime light images,land cover data,and digital elevation model data.Secondly,we establish SDG 1 China's localized partial least squares estimation model and SDG 1 China's localized machine learning estimation model.Finally,we analyze and verify the spatiotemporal distribution characteristics of China's poverty areas and counties and their SDG 1 evaluation values.The results show that SDG 1 China's district and county localization indicator system proposed in this study and SDG 1 China's localized partial least squares estimation model can better reflect the poverty level of China's districts and counties.The estimated model R2 is 0.65,which can identify 72.77%of China's national poverty counties.From 2012 to 2018,the spatial distribution pattern of SDG evaluation values in China's districts and counties is that the SDG evaluation values gradually increase from western China to eastern China.In addition,the average SDG 1 evaluation value of China's districts and counties increased by 23%from 2012 to 2018.This paper is oriented to the United Nations SDGs frame-work,explores the SDG 1 localized evaluation method of China's districts and counties based on multisource remote sensing data,and provides a scientific and rapid regional poverty monitoring and evaluation program for the implementation of the 2030 agenda poverty alleviation goals.

Multisource remote sensing dataSustainable Development Goals(SDGs)poverty indicator systempartial least squaresmachine learning

Mengjie Wang、Yanjun Wang、Fei Teng、Shaochun Li、Yunhao Lin、Hengfan Cai

展开 >

Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying,Mapping and Remote Sensing,Hunan University of Science and Technology,Xiangtan,China

National-Local Joint Engineering Laboratory of Geo-spatial Information Technology,Hunan University of Science and Technology,Xiangtan,China

School of Earth Sciences and Spatial Information Engineering,Hunan University of Science and Technology,Xiangtan,China

2024

地球空间信息科学学报(英文版)
武汉大学(原武汉测绘科技大学)

地球空间信息科学学报(英文版)

影响因子:0.207
ISSN:1009-5020
年,卷(期):2024.27(1)