首页|The ATL08 as a height reference for the global digital elevation models

The ATL08 as a height reference for the global digital elevation models

扫码查看
High-quality height reference data are embedded in the accuracy verification processes of most remote sensing terrain applications.The Ice,Cloud,and Land elevation Satellite 2(ICESat-2)/ATL08 terrain product has shown promising results for estimating ground heights,but it has not been fully evaluated.Hence,this study aims to assess and enhance the accuracy of the ATL08 terrain product as a height reference for the newest versions of the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER),the Shuttle Radar Topography Mission(SRTM),and TanDEM-X(TDX)DEMs over vegetated mountainous areas.We used uncertainty-based filtering method for the ATL08 strong and weak beams to enhance their accuracy.Then,the results were evaluated against a reference airborne LiDAR digital terrain model(DTM),by selecting 10,000 points over the entire area and comparing the accuracy of ASTER,SRTM,and TDX DEMs assessed by the LiDAR DTM to the accuracy of the ASTER,SRTM,and TDX DEMs assessed by the ATL08 strong beams,weak beams,and all beams.We also detected the impact of the terrain aspect,slope,and land cover types on the accuracy of the ATL08 terrain elevations and their relationship with height errors and uncertainty.Our findings show the accuracy of the ATL08 strong beams was enhanced by 43.91%;while the weak beams accuracy was enhanced by 74.05%.Furthermore,slope strongly influenced ATL08 height errors and height uncertainty;especially on the weak beams.The errors induced by the slope significantly decreased when the uncertainty levels were reduced to<20 m.The evalua-tions of ASTER,SRTM,and TDX DEMs by ATL08 strong and weak beams are close to those assessed by LiDAR DTM points within 0.6 m for the strong beams.These findings indicate that ATL08 strong beams can be used as a height reference over vegetated mountainous regions.

ATL08digital elevation model(DEM)digital terrain model(DTM)slopeland coverterrainvalidationICESat-2

Nahed Osama、Zhenfeng Shao、Yue Ma、Jianguo Yan、Yewen Fan、Shaimaa Magdy Habib、Mohamed Freeshah

展开 >

State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan,China

Department of Aviation and Aerial Photography,National Authority for Remote Sensing and Space Sciences,Cairo,Egypt

School of Electronic Information,Wuhan University,Wuhan,China

Department of Surveying Engineering,Faculty of Engineering at Shoubra,Benha University,Cairo,Egypt

School of Geodesy and Geomatics,Wuhan University,Wuhan,China

展开 >

2024

地球空间信息科学学报(英文版)
武汉大学(原武汉测绘科技大学)

地球空间信息科学学报(英文版)

影响因子:0.207
ISSN:1009-5020
年,卷(期):2024.27(2)