首页|基于线性贝叶斯和改进的典型相关分析法的地震岩石物理反演

基于线性贝叶斯和改进的典型相关分析法的地震岩石物理反演

扫码查看
岩石物理反演作为一种直观的定量解释手段,是储层表征的一个重要研究课题,其中岩石物理模型是联系储层物性参数与弹性参数的桥梁.传统岩石物理反演往往需要在井位处校准岩石物理模型,而在地下介质复杂时,常规的岩石物理模型难以准确描述二者之间的关系,极大地影响了岩石物理反演的准确性.为降低岩石物理模型校准带来的误差,本文引入改进的典型相关分析(BP-CCA)法来构建储层物性参数与弹性参数之间的统计岩石物理关系,从而获得地下储层物性参数的空间展布信息.此外,该方法采用线性贝叶斯理论从叠前地震数据反演得到纵、横波速度及密度等弹性参数,具有较高的反演精度和计算效率.本文对提出的方法进行了合成数据实验和实际数据应用测试.结果表明,该方法可实现对储层参数的准确刻画,验证了其可靠性.
Seismic-petrophysical inversion based on linear Bayesian theory and modified canonical correlation analysis
Petrophysical inversion,as an intuitive quantitative interpretation tool,is an important topic in reservoir characterization,where Rock Physics Models(RPMs)link petrophysical and elastic parameters.Traditional petrophysical inversion usually requires calibrating RPMs at well location.In addition,it is difficult for regular RPMs to accurately describe the relationships between petrophysical and elastic parameters in a complex geological environment,which further affects the accuracy of petrophysical inversion.To solve these problems,a modified canonical correlation analysis method called BP-CCA is introduced to construct statistical petrophysical relationships between petrophysical and elastic parameters,so as to obtain the subsurface spatial distribution of petrophysical parameters.Moreover,the linear Bayesian theory is adopted to invert elastic parameters,such as the P-and S-wave velocity and density,from prestack seismic data,which has higher inversion accuracy and computational efficiency.In our work,both synthetic data experiments and practical data applications are carried out using the proposed method,which prove that the proposed method provides higher reliability and more precise characterization of petrophysical parameters than traditional methods.

Reservoir characterizationSeismic inversionRock physicsStatistical analysis

曹亚梅、周辉、于波、王玲谦

展开 >

油气资源与工程全国重点实验室,CNPC物探重点实验室,中国石油大学(北京),北京 102249

东北石油大学地球科学学院,大庆 163318

中国石油大学(北京)理学院,北京 102249

储层识别 地震反演 岩石物理 统计分析

国家重点研发计划&&CNPC前瞻性基础研究项目CNPC-中国石油大学(北京)战略合作科技专项

2018YFA07025022022DQ0604-032021DJ3506ZLZX2020-03

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(1)
  • 23