首页|基于UNet++卷积神经网络的重力异常三维密度反演

基于UNet++卷积神经网络的重力异常三维密度反演

扫码查看
三维密度反演是地球物理领域的研究热点,而在大数据及人工智能发展的时代背景下如何快速高效地实现重力数据反演显得更为重要.传统反演方法通常需要存储大型系数矩阵,内存占用大,耗费时间长,同时为约束反演结果而加入的正则化约束项参数难以确定;深度学习可以不依赖先验信息,也不需要计算及存储系数矩阵,使得计算效率大大提高.基于此,本文提出了一种基于UNet++网络的重力异常反演方法.首先将UNet++网络中部分参数进行更改:选择在输入数据绝对值较大时梯度更稳定的LeakyReLU作为激活函数;加入了 Batch Normalization层,增强了网络的收敛速度及稳定性.然后为了提高网络的全局最优化能力,引入了基于余弦退火的学习率更新策略,使用梯度的一阶以及二阶矩估计的Adam最优化算法,利用数据集与标签集进行网络训练,实现了重力异常的三维密度反演.通过实验验证了 UNet++、LeakyReLU更快速稳定的收敛能力,而余弦退火学习率更新策略具有更强的全局寻优能力.含噪模型实验及实际数据反演结果进一步证明该方法的正确性和有效性,及其良好的泛化能力与抗噪能力.
3D density inversion of gravity anomalies based on UNet++
3D density inversion is a hot research topic in geophysics.It is more important to inverse quickly and efficiently using gravity data in the context of big data and artificial intelligence development.In traditional inversion methods,it takes up a large memory and a long time to store the large coefficient matrix.At the same time,it is difficult to determine the parameters of the regularization constraint term added to the constraints of the inversion results.While deep learning does not rely on a priori information,nor does it need to compute and store coefficient matrices,which makes the computation much more efficient.Based on this,this paper proposes a gravity anomalies inversion method using UNet++network.Firstly,we changed some parameters of UNet++network.LeakyReLU,which has a more stable gradient when the absolute value of input data are large,is selected as the activation function.Batch Normalization layer is added to enhance the convergence speed and stability of the network.Then,in order to improve the global optimization capability of the network,a learning rate updating strategy based on cosine annealing is used.The network is trained on the data sets and the label sets by Adam optimization algorithm using first-order and second-order moment estimation of gradients to achieve the 3D density inversion of gravity anomalies.The fast and stable convergence ability of UNet++and LeakyReLU and the stronger global optimization finding ability of the cosine annealing are verified.The experiments of the noise-containing models and practical data inversion results further prove the correctness,effectiveness,good generalization and noise immunity of the method.

Density inversionGravity anomaliesUNet++Cosine annealingDeep learning

李柏森、鲁宝亮、安国强、巨鹏、朱武、苏子旺

展开 >

长安大学地质工程与测绘学院,西安 710054

海洋油气勘探国家工程研究中心,北京 100028

长安大学西部矿产资源与地质工程教育部重点实验室,西安 710054

自然资源部生态地质与灾害防控重点实验室,西安 710054

展开 >

密度反演 重力异常 UNet++ 余弦退火 深度学习

国家自然科学基金国家自然科学基金中央高校基本科研业务费中央高校基本科研业务费

4237416841904106300102260202300102262902

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(2)
  • 26