首页|融合多源海洋大地测量数据的南海海底地形多层感知机反演

融合多源海洋大地测量数据的南海海底地形多层感知机反演

扫码查看
本文融合SIO(Scripps Institution of Oceanography)发布的垂线偏差、重力异常和垂直重力梯度数据及NCEI(National Centers for Environmental Information)发布的船载测深数据,利用多层感知机神经网络(Multi-Layer Perceptron,MLP)建立南海海域(108°E—121°E,6° N—23°N)分辨率为1'× 1'的海底地形模型(MLP_Depth).首先,将642716个船载测深控制点的位置信息与周围4'×4'格网点处的地球重力信息(垂线偏差、重力异常、垂直重力梯度)作为输入数据,将船载测深控制点处实测水深值作为输出数据,训练MLP神经网络模型,训练结束时决定系数R2为99%,平均绝对误差MAE为39.33 m.然后,将研究区域内1'×1'格网正中心点处的输入数据输入于MLP模型中,可得格网正中心点处的预测海深值.最后,根据预测海深值建立研究区域范围内分辨率为1'×1'的MLP_Depth模型.将MLP_Depth模型预测水深与160679个检核点处实测水深对比,其差值的标准差STD(75.38 m)、平均绝对百分比误差MAPE(5.89%)与平均绝对误差MAE(42.91 m)皆优于GEBCO_2021模型、topo_23.1 模型、ETOPO1 模型与检核点实测水深差值的 STD(108.88 m、113.41 m、229.67 m)、M APE(6.11%、6.94%、18.37%)与MAE(47.33 m、52.24 m、130.08 m).同时,为了研究不同区域内利用该方法建立的海底地形模型的精度,本文在研究区域内分别建立了 A、B区域的海底地形模型(MLP_Depth_A、MLP_Depth_B).经过验证得:MLP_Depth_A、MLP_Depth_B相比于MLP_Depth模型具有更高的精度,更能反应海底地形的变化趋势.
Multi-layer perceptron inversion of seafloor topography in the South China Sea using multi-source marine geodetic data
This paper uses a Multi-Layer Perceptron neural network(MLP)constructs a high-resolution(1'×1')bathymetry model for the South China Sea region(108°E—121°E,6°N—23°N),known as MLP_Depth.This method integrates data from the Scripps Institution of Oceanography(SIO),including vertical deviation,gravity anomalies,and vertical gravity gradient data,alongside shipborne bathymetric data from the National Centers for Environmental Information(NCEI).Firstly,the positional information of 642716 shipborne bathymetric control points and the gravity information(including vertical deviation,gravity anomalies,and vertical gravity gradient)at nearby 4'×4'grid points are used as input data,while the actual bathymetry at the shipborne bathymetric control points are used as the output data.Then,the MLP neural network model is trained with this dataset.At the end of the training,the coefficient of determination(R2)is 99%and the mean absolute error(MAE)is 39.33 m.Then,by feeding the input data from the central points of the 1'×1'grid cells within the study area into the MLP model,we can obtain the predicted bathymetry values at these central grid points.Finally,based on the predicted bathymetry values,we establish the MLP_Depth model within the study area with a resolution of 1'×1'.The MLP_Depth model s predicted bathymetry are compared with the measured bathymetry at 160679 check points.The standard deviation(STD)of the difference is 75.38 m,the mean absolute percentage error(MAPE)is 5.89%,and the MAE is 42.91 m.These metrics are superior to those of the GEBCO_2021,topo_23.1,and ETOPO1 models,as well as the differences between the measured bathymetry at check points(STD:108.88 m,113.41 m,229.67 m;MAPE:6.11%,6.94%,18.37%;M AE:47.33 m,52.24 m,130.08 m),respectively.Additionally,to assess the accuracy of bathymetry models established using this approach in distinct regions,this study developed bathymetry models(MLP_Depth_A and MLP_Depth_B)within specific area A and area B of the study region.Validation results demonstrate that both MLP_Depth_A and MLP_Depth_B offer superior precision compared to the MLP_Depth model,effectively capturing the nuances in bathymetry variations.

Multi-layer perceptronSeafloor topographySouth China SeaVertical deviationGravity anomalyVertical gravity gradient

周帅、刘新、李真、祝程程、袁佳佳、李静静、郭金运、孙和平

展开 >

山东科技大学测绘与空间信息学院,青岛 266590

山东建筑大学测绘地理信息学院,济南 250101

安徽理工大学空间信息与测绘工程学院,安徽淮南 232001

地理信息工程国家重点实验室,西安 710054

中国科学院精密测量科学与技术创新研究院,武汉 430077

展开 >

多层感知机 海底地形 南海 垂线偏差 重力异常 垂直重力梯度

国家自然科学基金国家自然科学基金国家自然科学基金山东科技大学科研创新团队支持计划

4219253542274006422420152014TDJH101

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(4)
  • 63