首页|一种基于改进门控循环单元的叠前时变子波提取方法

一种基于改进门控循环单元的叠前时变子波提取方法

扫码查看
子波的精确提取是地震勘探后续反演与成像的前提,针对传统时变子波提取方法受到的各类假设限制,且需分别提取子波振幅谱与相位谱的问题,本文提出了一种基于改进门控循环单元(GRU)网络的叠前时变地震子波提取方法.根据实际叠前地震数据分布特征与非平稳性质,本方法首先建立非平稳地震记录与添加随机噪声的时变子波训练数据集;为对提取出的时序特征进行拓展,提升传统GRU网络对长时序列的处理能力,本方法搭建起含多层GRU模块与全连接神经网络的改进门控循环单元网络模型;利用建立的训练数据集对网络模型进行训练使网络具备提取时变子波的能力;为提高训练效率与提取精度,本方法在训练的反向传播过程中应用自定义WaveLoss损失函数衡量误差,最终实现叠前时变子波的估计.经合成数据仿真实验与不同方法对比验证,本文提出的叠前时变子波提取方法具有更高的准确度;经对中国西部不同地区实际叠前地震资料处理与反褶积验证分析,该方法可有效提高目标区叠前地震剖面分辨率.
Prestack time-varying wavelet extraction method based on improved gated recurrent units network
Accurate extraction of seismic wavelets is the premise of subsequent inversion and imaging.In this paper,an improved Gated Recurrent Units(GRU)network for prestack time-varying seismic wavelet extraction is proposed to solve the problems that traditional time-varying wavelet extraction methods need to conform to various assumptions,need to extract amplitude and phase separately.First,the nonstationary convolution model is used to build the training data set based on the non-stationary nature and time-series properties of prestack seismic data.Then a neural network model was built to expand the extracted time-series features,including a multi-layer GRU and a fully connected neural network.Later the training data set is used to train the network model so that the network can extract time-varying wavelets.We define the specified loss function to measure the error during the backpropagation of training.Finally,achieve the accurate extraction of prestack time-varying wavelet.The synthetic data simulation experiments and the comparative wavelet extraction experiments verify that the proposed time-varying wavelet extraction method has improved the accuracy compared to the conventional methods.Using the actual prestack seismic data in western China,we showed that the proposed method improved the resolution of the seismic profiles in the target area.

Time-varying wavelets extractionGated Recurrent Units(GRU)networkPrestack seismic recordDeconvolution

戴永寿、李泓浩、孙伟峰、万勇、孙家钊

展开 >

中国石油大学(华东)海洋与空间信息学院,青岛 266580

时变子波提取 门控循环单元 叠前地震记录 反褶积

国家自然科学基金中国石油大学(华东)自主创新科研计划

4227415927RA2201017

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(4)
  • 37