首页|基于串行及并行多任务学习网络的储层参数评价研究

基于串行及并行多任务学习网络的储层参数评价研究

Comparison of well logging formation evaluation using serial and parallel multi-task learning networks

扫码查看
选取基于串行还是并行多任务学习的储层参数评价网络建模是近期涌现的一个问题.本文以中国西部某油田老区储层参数试验数据为基础,对比20种不同的基础神经元模块组成的多任务学习网络的孔隙度、饱和度和渗透率评价结果,据此提出模型选择策略:确定系数为评价指标,选择串行而不是并行结构网络模型的条件为模型参数量小于1000的参考值;模型参数量大于1000时,串行多任务网络不如并行多任务网络.当平均绝对误差为评价指标时,选取串行多任务的前提是模型参数量小于10000的参考值.模型参数量大于10000时,串行和并行多任务网络结果具有一定相似性.如果平均绝对误差和模型参数量均在允许范围内,两种架构网络均可行.本文旨在为后续不同类型多任务学习网络架构模型设计及应用提供支持.
The selection of reservoir parameter evaluation network modeling based on serial or parallel multi task learning is a recent emerging issue.This article is based on experimental data of reservoir parameters in an old oilfield area in western China.Compare the evaluation results of porosity,saturation,and permeability of multi-task learning networks that are composed of 20 types different basic neural modules.This paper proposed selection strategies:the coefficient of determination as the evaluation index,the condition for selecting a serial rather than parallel structured multi-task learning network model is that the model parameter quantity is less than about 1000;When the number of model parameters is greater than 1000,serial multi-task networks are not as good as parallel multi-task networks.When the mean absolute error is the evaluation indicator,the prerequisite for selecting a serial multi-task network is a reference value with a model parameter quantity less than 10000.When the number of model parameters is greater than 10000,the results of serial and parallel multi-task networks have some similarity.If the mean absolute error and model parameter quantity are within the allowable range,both architecture networks are feasible.This paper aims to provide support for the design and application of different types of multi-task learning network architecture models.

Multi-task learningReservoir parametersEvaluation mechanismModel policy

徐彬森、肖立志

展开 >

中国石油大学(北京)地球物理学院,北京 102249

多任务学习 储层参数 评价机制 模型策略

中国石油—中国石油大学(北京)重大战略合作项目

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(4)
  • 57