首页|一种基于谱分析的重力场统计特征建模方法

一种基于谱分析的重力场统计特征建模方法

扫码查看
重力场的统计特征主要包括协方差(相关函数)、功率谱密度、球谐阶方差等参量,是从空域、频域和球谐域描述重力场变化规律的主要依据.本文以扰动位的距离倒数协方差模型为核函数,研究了一种能在不同重力场元之间自洽解析转换的统计特征建模方法.分别利用高分辨率的地面重力异常和实测航空重力梯度数据进行功率谱分析,结合EGM2008模型构建了 3组重力场统计特征模型,分析了本文模型与经典模型的差异,并用于高频重力场随机模拟,验证了本文方法在不同频率区间建模的可行性和实用性.本文模型可用于重力梯度探测、高频重力场随机模拟、重力场推估等方面的定量分析,相关算法和思路也可为构建更精细的统计特征模型提供借鉴.
A method of statistical modelling for gravity field based on spectral analysis
Statistical characteristics for the gravity field mainly include covariance(correlation),power spectral density and degree variance,which form the base of characterizing the gravity field from the spatial domain,frequency domain and spherical harmonic domain.In this paper,we present a self-consistent and analytic method to modelling the gravitational statistic using power spectral derived from the reciprocal distance covariance of the disturbing potential.Three sets of model parameters were obtained by fitting to power spectra of high-resolution ground gravity anomaly and airborne gravity gradient data combined with EGM2008,respectively.To study the feasibility of the method,our model was numerically compared with classical ones in terms of power spectra and degree variance,and we find that our model furthermore ensures a good fit to actual power spectra at various scales.The model was also tested on simulation of high-frequency gravity field.We concluded that the closed form of our covariance and spectral density functions are particularly useful for quantitative analysis of gravity gradient detection,random simulation of high frequency gravity field and gravity field collocation.Also,a more precise model can be yielded by our methods with available data sets.

Power spectral densityCovarianceDegree variancesStatistical characterAirborne gravity gradientThe reciprocal distance model

黄佳喜、边少锋、纪兵、杨军军

展开 >

海军工程大学电气工程学院,武汉 430033

中国地质大学(武汉)地质探测与评估教育部重点实验室,武汉 430074

中国自然资源航空物探遥感中心,北京 100083

功率谱密度 协方差 阶方差 统计特征 航空重力梯度 距离倒数模型

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目

421220254197141642074010

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(7)
  • 5