首页|基于物理约束的分布式神经网络三维地应力预测模型

基于物理约束的分布式神经网络三维地应力预测模型

扫码查看
地应力是油气藏全生命周期中井壁稳定分析、水力压裂设计、地层出砂预防、套损预测防治和油气开采措施制定的重要基础参数.针对缺乏三维地震资料情况下的三维地应力场预测问题,以工区已钻井地应力测井解释结果为基础,建立了一种基于物理约束的分布式神经网络三维地应力预测模型.首先,采用测井解释方法获得工区已钻井地应力单井剖面,并通过Kriging插值构建三维地质模型;其次,将测井数据和三维地质模型的三维空间坐标喂入3个并行的全连接神经网络,引入地应力物理约束条件,提出了数据和物理双约束的条件,进而通过三维空间坐标实现三维地应力场的预测;再次,优选了数据和物理双约束的权重参数,与人工神经网络、支持向量回归、随机森林等三种机器学习模型以及克里金插值模型进行了对比;最后,评价了不同机器学习模型预测地应力的效果.研究结果表明:①研究区域的地应力满足潜在正断层应力状态,即垂向地应力>最大水平地应力>最小水平地应力;②数据和物理双约束权重参数取值对预测结果有显著影响,当权重参数λ=0.2时,三维地应力预测效果最优;③与人工神经网络、支持向量回归、随机森林、克里金插值等模型相比,本文模型预测得到的地层三维地应力和孔隙压力更准确,在工区内测试集预测得到的垂向地应力、最大水平地应力、最小水平地应力和地层孔隙压力的最大相对误差分别为0.63%、7.59%、7.16%、3.21%,而且,本文模型能够更加准确捕捉地应力梯度的三维变化特征,水平井段地应力和地层孔隙压力参数的正态分布特征明显.结论认为,物理约束的分布式神经网络模型能有效融合地形构造与地应力之间的联系,提高三维地应力预测的准确性和可解释性,为油田三维地应力场的预测提供了一种新的思路.
Physics-constrained distributed neural network model for 3D in-situ stress prediction
In-situ stress is an important basic parameter in the whole life cycle of an oil and gas reservoir,such as wellbore stability analysis,hydraulic fracturing design,sand production prevention,casing damage prediction and prevention,and oil and gas exploitation measures.Aiming to address the challenge of predicting 3D in-situ stress fields in the absence of 3D seismic data,a physics-constrained distributed neural network model(PDNN)was proposed for 3D in-situ stress prediction.This model was developed based on the logging interpretation results of in-situ stress for drilled wells in the working area.Firstly,the single well profile of in-situ stress was obtained by logging interpretation method,and the 3D geological model was constructed by Kriging interpolation.Secondly,the logging data and the 3D spatial coordinates of the 3D geological model were input into three fully connected neural networks.The physical constraints of the in-situ stress were introduced,the conditions of both the data and the physical constraints were proposed,and the 3D spatial coordinates were employed to forecast the 3D in-situ stress field.Subsequently,the weight parameters of both the data and the physical constraints were selected and compared with three machine learning models,including the artificial neural network(ANN),support vector regression(SVR),and random forest(RF),as well as the Kriging interpolation model.Finally,the effect of different machine learning models in predicting in-situ stress was then evaluated.The results indicated that:(1)The in-situ stress in the study area was consistent with the potential normal faulting stress state,namely,vertical principal stress>maximum horizontal principal stress>minimum horizontal principal stress.(2)The value of the weight parameter,which incorporates both the data and the physical constraints,had a significant influence on the prediction results.The optimal prediction performance for the 3D in-situ stress was achieved when the weight parameter was set to A=0.2.(3)In comparison to the ANN,SVR,RF,and Kriging models,the 3D in-situ stress and pore pressure predicted by this model exhibited greater accuracy.The average absolute percentage errors of the vertical principal stress,maximum horizontal principal stress,minimum horizontal principal stress,and formation pore pressure predicted by the testing set in the working area were 0.63%,7.59%,7.16%,and 3.21%,respectively.Furthermore,the model proposed in this paper was capable of accurately capturing the 3D variation characteristics of in-situ stress gradient.The normal distribution characteristics of in-situ stress and pore pressure in horizontal wells were readily apparent.It can be concluded that the PDNN model is an effective means of integrating the relationship between topography and in-situ stress,thereby improving the accuracy and interpretability of 3D in-situ stress prediction,and it provides a novel approach to the prediction of 3D in-situ stress fields in oilfields.

3D in-situ stressPore pressureNeural networkPhysical constraintData-drivenGeological model

马天寿、向国富、桂俊川、贾利春、唐宜家

展开 >

西南石油大学"油气藏地质及开发工程"全国重点实验室,成都 610500

国家管网集团储能技术有限公司,上海 200122

中国石油西南油气田分公司页岩气研究院,成都 610051

中国石油川庆钻探工程有限公司钻采工程技术研究院,四川广汉 618300

中国石油西南油气田分公司工程技术研究院,成都 610017

展开 >

三维地应力 孔隙压力 神经网络 物理约束 数据驱动 地质模型

国家自然科学基金项目四川省自然科学基金重点项目

516042302024NSFSC0023

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(8)