首页|中国冬季降水的支持向量机预测模型研究

中国冬季降水的支持向量机预测模型研究

扫码查看
我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学习方法提高中国冬季降水的预测准确率.基于NCEP_CFS,ECMWF_SYSTEM,BCC_CSM等五个模式数据以及站点数据,建立针对冬季降水的SVM集成预测模型,并与单个模式和等权集合平均模型(AVE)加以对比.SVM模型因其强泛化和处理非线性问题的能力,在中国冬季降水预测中表现良好.研究表明:(1)SVM模型较单个模式及AVE模型的预测准确性与稳定性得到大幅提升,SVM模型的PS评分和PCS评分显著高于单个成员模式的结果,最大分别提高了 8.0(12.6%)和3.9(7.4%),较AVE模型则最大分别提高了 5.4(8.2%)和2.1(3.8%),预报技巧的提高在观测资料相对缺乏的西南和西北地区尤为明显.(2)从均方根误差和时间相关系数的空间分布上来看,SVM模型对其成员模式在西藏地区、西南地区、华东及华南地区误差较大的情况改善明显,误差最大降低了 259(90.9%),预报技巧最大提高了 1.13.(3)独立样本检验中,SVM模型的PS评分和PCS评分显著高于单个模式和AVE模型,最大提高了 10.79(20.3%)和11.39(27.3%).因此,SVM模型的构建,将有助于进一步提高中国冬季降水预测的准确性和稳定性,为气象防灾减灾和气候资源开发利用等提供重要技术支撑.
Ensemble prediction of winter precipitation in China based on Support Vector Machine Method
Winter precipitation in China is of significant importance for agriculture,water resource management,and natural disaster risk assessment.Due to the influence of various meteorological factors,predicting winter precipitation remains a formidable challenge.Enhancing the predictive capabilities is therefore a pivotal focus in contemporary short-term climate prediction research.The study implements Support Vector Machine(SVM)method,with the aim of improving the accuracy of predictions of China's winter precipitation through machine learning techniques.Capitalizing on model data from NCEP_CFS,ECMWF_SYSTEM,BCC_CSM and two other models along with station data,a SVM ensemble prediction model for winter precipitation is constructed and benchmarked against individual models and equally weighted ensemble mean model(AVE).The SVM model exhibits excellent performance in winter precipitation prediction owing to its strong generalization capabilities and proficiency in handling nonlinear problems.The research shows that:(1)The prediction accuracy and stability of the SVM model exhibit considerable improvements compared to individual models and AVE models.The PS score and PCS score of the SVM model notably surpass those of individual member models,with maximum improvements of 8.0(12.6%)and 3.9(7.4%)respectively,compared to the AVE model,which sees maximum improvements of 5.4(8.2%)and 2.1(3.8%)respectively.This enhancement in forecast skills is particularly pronounced in the southwest and northwest regions where observational data are relatively scarce.(2)Spatially,the SVM model markedly ameliorates situations where member models exhibit substantial errors in regions such as Tibet,southwest,east and south China.Maximum error reduction reaches 90.9%(259)and maximum improvement in forecasting skills by 1.13.(3)In the independent sample testing,the PS score and PCS score of SVM model significantly outperform those of individual model and AVE model,with maximum improvements of 10.79(20.3%)and 11.39(27.3%)respectively.Hence,the advancement of the SVM model promises to catalyze further enhancements in the precision and reliability of forecasts for China's winter precipitation.This progress will provide indispensable technical backing for endeavors in meteorological disaster prevention and mitigation,exploitation of climate resources,and associated applications.

PrecipitationSupport vector machine(SVM)Equally weighted ensemble mean modelEnsemble prediction

姚晨伟、杨子寒、白慧敏、吴银忠、龚志强、封国林

展开 >

苏州科技大学物理科学与技术学院,江苏苏州 215009

山西大学复杂系统研究中心,太原 030006

国家气候中心气候研究开放实验室,北京 100081

扬州大学物理科学与技术学院,江苏扬州 225002

展开 >

降水 支持向量机 等权集合平均模型 集成预测

国家重点研发计划国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目陕西省自然科学研究项目

2022YFE01360004213061042075057422750502023-JC-YB-252

2024

地球物理学报
中国地球物理学会 中国科学院地质与地球物理研究所

地球物理学报

CSTPCD北大核心
影响因子:3.703
ISSN:0001-5733
年,卷(期):2024.67(10)
  • 48