首页|基于深度学习的速度场建模方法

基于深度学习的速度场建模方法

扫码查看
地震速度场建模在油气田勘探开发中起着至关重要的作用.随着神经网络的发展,深度学习凭借其强大的非线性映射能力,被广泛应用到速度场建模中.但由于速度模型与地震数据之间映射关系复杂,使用共炮点道集进行训练,容易出现网络训练不稳定,网络训练泛化能力差等问题.为了解决这个问题,本文基于U-Net++神经网络,提出了一种通过共中心点道集和叠加速度谱映射层速度模型的方法.该方法在已提出的共炮点道集和叠加速度谱映射层速度模型的基础上,进一步利用共中心点道集与层速度模型相对应的特点,通过U-Net++强大的特征提取和还原能力,学习地震资料中的关键特征,生成精确的地下层速度模型.测试数据集实验表明,共中心点道集和叠加速度谱的特征组合稳定性和抗噪性要优于共炮点道集和叠加速度谱的特征组合.深度学习构建层速度模型,只需经过网络训练,就可以对具有相似的地下构造的速度模型进行预测,构建层速度模型的效率大大提高,因此地球物理与深度学习的结合在实际地震勘探中具有重要的应用前景.
Velocity field modeling method based on deep learning
Seismic velocity field modeling plays a crucial role in oil and gas exploration and development.With the advancement of neural networks,deep learning has been widely applied to velocity field modeling due to its powerful nonlinear mapping capabilities.However,the mapping relationship between velocity models and seismic data is complex,and training using common shot gathers often leads to unstable network training and poor generalization ability.To address this issue,this paper proposes a method based on the U-Net++neural network for layer velocity model through the Common Midpoint Gather(CMP)and stacked velocity spectrum.Building upon the existing the common shot gather and stacked velocity spectrum mapping layer velocities,this method further leverages the one-to-one correspondence between CMP and stacked velocity spectrum,harnessing the powerful feature extraction and restoration capabilities of U-Net++.By learning the crucial features from seismic data,it generates precise subsurface velocity models.Experimental results on the test dataset demonstrate that the feature combination of common midpoint gather and stacked velocity spectrum exhibits superior stability and noise resistance compared to the feature combination of shot gather and stacked velocity spectrum.Constructing layer velocity models using deep learning enables efficient prediction of velocity models with similar subsurface structures through network training.This significantly improves the efficiency of building layer velocity models,making the integration of geophysics and deep learning promising for practical seismic exploration.

U-Net++CMP gatherStacked velocity spectrumLayer velocity modelDeep learning

马新月、张冰、徐嘉亮、李天任、徐强

展开 >

东北石油大学地球科学学院,大庆 163711

中海油田服务股份有限公司物探事业部研究院,天津 300450

U-Net++ 共中心点道集 叠加速度谱 层速度模型 深度学习

国家自然科学基金国家自然科学基金黑龙江省自然科学基金黑龙江省自然科学基金海南省科技创新基金

4227416942274170YQ2021D007HL2021D0082021JJLH0052

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(1)
  • 40