首页|基于改进Stacking算法的致密砂岩储层测井流体识别

基于改进Stacking算法的致密砂岩储层测井流体识别

扫码查看
致密砂岩储层物性差,测井响应对孔隙流体不敏感,应用传统测井解释图版划分流体类型精度较低.机器学习技术通过学习更多维度的特征,可以建立合适的流体识别模型.相较于单一算法,集成学习可以通过联合多个专家模型提升预测精度,但是不同的集成学习策略性能差距较大.本文提出了一种改进的Stacking算法,通过平均影响值法寻找敏感测井曲线作为输入,利用不同的特征集构建多个子模型,并使用不同集成策略将其组合为若干性能更佳的专家模型进行训练,同时引入独立专家避免过拟合,将专家模型的预测结果通过交叉验证的方式进行模拟预测,最后应用元学习器预测最终结果.将该方法用于库车坳陷迪北气藏致密砂岩储层流体识别,测试准确率可达93%,优于CatBoost模型和XGBoost模型,证明了该方法的有效性和适用性.为致密砂岩储层流体识别提供了新的思路.
Log identification of fluid types in tight sandstone reservoirs using an improved Stacking algorithm
Tight sandstone reservoirs have poor physical properties.Resistivity logging data usually reflect the lithological and physical properties of the formation,and the logging response characteristics caused by formation fluids are insensitive.Therefore,the application of traditional well logging interpretation charts to classify reservoir fluids has low accuracy and cannot accurately classify fluid types.Machine learning can input more dimensional features for modeling,and can find more potentially effective information than traditional well logging interpretation charts.At present,machine learning algorithms mainly consist of a single algorithm and an ensemble learning method.Compared with individual machine learning algorithms,ensemble learning combines the training or prediction results of a single algorithm through reasonable decision-making,and finally outputs the final result.However,the performance gap between different ensemble learning strategies is large,so the structure of the ensemble learning model needs to be improved.This paper proposes an improved Stacking algorithm,which uses the Mean Impact Value(MIV)method to find logging curves that are more sensitive to fluids for input.It studies the use of different feature sets to build multiple sub-models,and uses different integration strategies to combine the sub-models into Expert models,these expert models have better performance than sub-models.In order to avoid overfitting,we designed an independent expert model,simulated the prediction results of the expert model through cross-validation,and input the simulated prediction results into the meta-classifier for learning to obtain the final prediction results.We applied the re-improved stacking algorithm to identify fluids in the tight sandstone reservoir of the Dibei area in the Kuqa Depression.For comparison,we input the same logging data to the CatBoost model and the XGBoost model.The results show that the improved stacking algorithm achieved the highest accuracy,up to 93%,which is better than the accuracy of the comparison model.The above research proves the effectiveness and applicability of the improved stacking algorithm,and provides a new idea for intelligent methods to identify fluids in tight sandstone.

Machine learningEnsemble learningStacking algorithmTight sandstone reservoirFluid identification

史鹏宇、徐思慧、冯加明、史鹏达、赵培强、毛志强

展开 >

中国石油大学(北京)地球物理学院,北京 102249

油气资源与工程全国重点实验室,北京 102249

地球探测与信息技术北京市重点实验室,北京 102249

中国石油塔里木油田分公司勘探开发研究院,库尔勒 841000

成都信息工程大学,成都 610225

展开 >

机器学习 集成学习 Stacking算法 致密砂岩储层 流体识别

中国石油大学(北京)引进人才启动基金

2462020BJRC001

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(1)
  • 52