首页|基于Res-Unet与迁移学习的地震相识别

基于Res-Unet与迁移学习的地震相识别

扫码查看
地震相是沉积相在地震剖面上的直观表现,地震相的有效识别是地震解释、沉积相研究以及油气资源勘探开发的重要工作内容.传统地震相识别主要依赖解释人员的认识和经验,不仅工作量大,而且还具有较强的主观性,效率也较低.基于深度学习的地震相自动识别技术可以有效解决上述问题.本文构建一种Res-Unet网络学习地震数据与地震相之间的非线性关系,Res-Unet网络可以加深网络的深度,充分利用地震剖面的空间信息,克服由于不同地震相在地震剖面上表现出的相似性而带来的困难;针对训练样本较少的问题,提出采用随机切割曲线的方法切割三维数据体来扩充样本;针对泛化性问题,提出通过迁移学习策略将学习好的模型迁移到待识别的数据上,简化了识别流程,提高了识别精度.首先,将提出的方法应用于北海F3工区,地震相识别结果表明:Res-Unet网络在地震相识别中有较高的精度;最后,将上述训练好的模型迁移到南海某工区的地震数据上,获得了良好的地震相识别结果.
Seismic facies identification based on Res-Unet and transfer learning
Seismic facies is the direct reflection of sedimentary facies on seismic section.The effective identification of seismic facies is an important work in seismic interpretation,sedimentary facies research and oil and gas exploration and development.Traditional seismic facies identification mainly depends on the understanding and experience of interpreters.It not only has a large workload,but also has strong subjectivity and low efficiency.Automatic seismic facies recognition technology based on deep learning can effectively solve the above problems.A Res-Unet network is constructed to learn the nonlinear relationship between seismic data and seismic facies.The Res-Unet network can deepen the depth of the network,make full use of the spatial information of seismic profiles,and overcome the difficulties caused by the similarity of different seismic facies on seismic profiles.Aiming at the problem of less training samples,a random cutting curve method is proposed to cut the three-dimensional data volume to expand the samples.Aiming at the generalization problem,the transfer learning strategy is proposed to transfer the learned model to the data to be identified,which simplifies the recognition process and improves the recognition accuracy.Firstly,the proposed method is applied to the F3 work area of Beihai.The results of seismic facies identification show that the Res-Unet network has high accuracy in seismic facies identification.Finally,the above trained model is migrated to the seismic data of a work area in the South China Sea,and good seismic facies recognition results are obtained.

Seismic faciesRes-Unet networkTransfer learningRandom cutting curveDeep learning

许天恩、周怀来、刘兴业、刘超

展开 >

成都理工大学地球物理学院,成都 610059

成都理工大学地球勘探与信息技术教育部重点实验室,成都 610059

地震相 Res-Unet网络 迁移学习 随机切割曲线 深度学习

四川省自然科学基金四川省科技计划项目四川省科技计划项目

2022NSFSC11502021YFG02572021YFH0050

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(1)
  • 36