首页|邻域信息增强的MLSTM在储层参数预测中的应用研究——以非均质性碳酸盐岩为例

邻域信息增强的MLSTM在储层参数预测中的应用研究——以非均质性碳酸盐岩为例

扫码查看
储层参数——孔隙度、渗透率及含水饱和度的准确预测是储层精细评价和油气勘探的重要基础.传统的储层参数预测技术主要依托由测井资料建立的经验公式或简化的地质模型,未充分考虑测井曲线间的非线性关系,在复杂储层上的泛化能力弱.考虑到碳酸盐岩储层的强非均质性以及测井数据的地层深度序列特点,本文提出一种融合邻域信息的多层长短期记忆神经网络(FN-MLSTM),解决碳酸盐岩储层参数预测问题.首先采用主成分分析法(PCA)对测井数据提取独立特征;利用K-Means算法及其优化技术进行无监督聚类,实现井群的优化划分;融合划分产生的邻域信息,搭建多层长短期记忆神经网络(MLSTM),实现对储层参数的准确预测.实验表明,本文提出的预测模型在某地区22 口井测试集上的均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)均优于长短期记忆网络(LSTM)、深度神经网络(DNN)、极限梯度提升树(XGBoost)和随机森林(RF),展现了在储层参数预测任务上的优异性能.此外,消融实验结果表明邻域信息的融入有效地提升了模型的预测精度.
Application of neighborhood information-enhanced MLSTM in reservoir parameter prediction:a case study of heterogeneous carbonate reservoirs
Accurately predicting reservoir parameters such as porosity,permeability,and water saturation is a fundamental basis for reservoir fine evaluation and oil and gas exploration.Traditional methods for the prediction of reservoir parameters often rely on empirical formulas or simplified geological models that are built upon well logging data.However,these methods tend to overlook the nonlinear relationships among well logs and exhibit poor generalization ability when applied to complex reservoirs.Facing the strong heterogeneity of carbonate reservoirs and the sequential characteristics of well logs,this paper proposes a Fused Neighborhood information Multi-layer Long Short-Term Memory network(FN-MLSTM)to address the challenge of parameters prediction of carbonate reservoir.Firstly,the Principal Component Analysis(PCA)is employed to extract independent features from well logs.Then,an unsupervised clustering technique based on the K-Means algorithm and its optimization is employed to form well groups.By incorporating the resulting neighborhood information,a Multi-layer Long Short-Term Memory network(MLSTM)is built to predict the reservoir parameters.Experimental results demonstrate that the proposed model outperforms other methods such as Long Short-Term Memory network(LSTM),Deep Neural Network(DNN),eXtreme Gradient Boosting(XGBoost),and Random Forests(RF)in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Coefficient of Determination(R2)on a test set of 22 wells in a specific region.This highlights the outstanding performance of the model in parameters prediction.Moreover,ablation experiments show that the integration of neighborhood information effectively improves the predictive accuracy of the model.

Reservoir parameter predictionWell logsMulti-layer Long Short-Term Memory network(MLSTM)Principal component analysisClustering

王欣、蒋涛、周幂、高国海、蒋薇、梅青燕、赵翔

展开 >

西南石油大学计算机科学学院,成都 610500

中国石油西南油气田勘探开发研究院,成都 610043

储层参数预测 测井曲线 多层长短期记忆神经网络 主成分分析 聚类

油气藏地质及开发工程国家重点实验室开放性研究课题

PLN 2022-33

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(2)