首页|融合通道和空间交叉注意力的裂缝识别方法

融合通道和空间交叉注意力的裂缝识别方法

扫码查看
针对现有的油气藏裂缝检测方法普遍存在信息采用单一、裂缝检测精度低、检测速度慢以及应用人工智能方法又存在缺乏训练样本的问题.提出一种基于注意力机制的FCN语义分割模型用于裂缝提取,并构建了测井图像裂缝识别数据集.首先,针对FMI裂缝识别提出空间交叉注意力,并将融合通道和空间交叉注意力模块引入FCN语义分割模型的下采样过程中,增强语义信息获取.其次,将改进模型的骨干网络设置为ResNet-50并利用膨胀卷积增大感受野,增强上下文信息,提高裂缝识别的准确率.最后,构建了包含2016张FMI测井图像数据集,采用一种超像素分割方法来辅助人工标注裂缝特征.将改进后的模型与其他经典语义分割模型相比,改进模型在构建的FMI测井图像裂缝识别数据集上可以取得更低的损失,更高的精度,且交并比达到了 74.61%.此外,通过消融实验再次证明了改进模型的有效性.结果表明,改进模型能够准确地提取出测井图像的裂缝信息,具有较好的实用性.
Fracture identification method combining channel and spatial cross attention
The existing methods for detecting fractures in oil and gas reservoirs suffer from issues such as the use of single information,low fracture detection accuracy,slow detection speed,and a lack of training samples when applying artificial intelligence techniques.In this study,we propose a novel FCN semantic segmentation model based on attention mechanism for fracture extraction and construct a dataset for fracture recognition in well logging images.Firstly,Spatial cross attention is introduced and fused with channel attention modules in the downsampling process of the FCN model to enhance semantic information retrieval.Secondly,ResNet-50 is adopted as the backbone network of the improved model,and dilated convolutions are employed to enlarge the receptive field,thereby enhancing contextual information and improving fracture recognition accuracy.Finally,a dataset consisting of 2016 FMI well logging images is constructed,and a superpixel segmentation method is employed to assist in the manual annotation of fracture features.Comparative experiments with other classic semantic segmentation models demonstrate that our improved model achieves lower loss,higher accuracy,and an Mean-Intersection-Over-Union(MIoU)of 74.61%on the constructed FMI well logging image dataset.Additionally,the effectiveness of the proposed model is further validated through ablation experiments.The results indicate that our improved model accurately extracts fracture information from well logging images and exhibits good practicality.

Fracture identificationChannel attentionSpace cross attentionFMISuperpixel segmentation

马同乐、刘红岐、廖海博、吴涛、陈东、刘伟、石晶穗萃

展开 >

西南石油大学,成都 610500

中国石油川庆钻探工程有限公司钻采工程技术研究院,广汉 618300

中国石油川庆钻探工程有限公司地质勘探开发研究院,成都 610500

裂缝识别 通道注意力 空间交叉注意力 电成像测井图像 超像素分割

国家自然科学基金中国石油-西南石油大学创新联合体项目

419741172020CX040203

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(2)