首页|地震定位方法最新进展综述

地震定位方法最新进展综述

扫码查看
精确的地震定位对于地球内部结构和地震孕育过程认知、断层精细结构探测、资源能源勘探开发、地震预警研究等众多科学技术问题至关重要.鉴于地震定位方法发展迅速,及时的综述最新进展重要且必要.目前的综述论文主要论述常规地震定位方法的进展,而涉及机器学习的地震定位方法的系统总结却很少.为便于读者了解地震定位方法原理与最新的前沿进展,本文首先介绍了近年来新发展的常规地震定位方法,如震源扫描类方法、双差类定位法、GrowClust等;然后重点介绍了最新的涉及机器学习的地震定位方法,包括完全基于机器学习的地震定位方法和机器学习辅助的地震定位流程.其中,基于机器学习的定位方法按照利用的神经网络的不同进行再次分类,包括了卷积神经网络、图神经网络、循环神经网络.机器学习辅助的定位流程介绍了 EasyQuake、QuakeFlow、LOC-FLOW 三种较受关注的方法.通过详细阐述LSTM-FCN模型、LOC-FLOW方法流程的实际应用,对比了代表性方法的定位效果.最后,本文对机器学习类的地震定位方法存在的问题和地震定位的发展方向进行分析与展望,指出机器学习模型轻量化是重要研究方向以及多种地震定位方法联合定位是地震定位发展的重要目标.
Review of recent advances in seismic location methods
Precise seismic location is essential for many scientific and technical problems such as the recognition of the Earth's internal structure and seismogenic processes,refined fault structure detection,resource and energy exploration and development,and earthquake early warning.Given the rapid development of seismic location methods,a timely review of the latest advances is important and necessary.The existing review papers mainly cover the progress of conventional seismic location methods,but there are few systematic summaries of seismic location methods involving machine learning.To facilitate readers to understand the principles of seismic location methods and the latest cutting-edge advances,this paper first introduces the newly developed seismic location methods in recent years,such as the source scanning class method,the double difference class location method,and GrowClust,etc.We then focus on the latest seismic location methods involving machine learning,including the fully machine learning-based seismic location methods and the machine learning-assisted seismic location processes.According to the adopted neural networks,including convolutional neural networks,graph neural networks,and recurrent neural networks,the machine learning-based location methods can be further categorized into different groups.For machine learning-assisted location process,we introduce three popular workflows,EasyQuake,QuakeFlow,and LOC-FLOW.By elaborating the practical applications of LSTM-FCN model and LOC-FLOW method,the location results of representative methods are compared.Finally,this paper analyzes and outlooks the problems and prospects of seismic location methods involving machine learning,pointing out that the lightweighting of machine learning models is an important research direction and the joint of multiple seismic location methods is an important goal for the development of seismic location.

Seismic locationMachine learningNeural networksJoint location

侯新荣、郭振威、高大维、李磊、柳建新

展开 >

中南大学地球科学与信息物理学院,长沙 410083

有色资源与地质灾害探查湖南省重点实验室,长沙 410083

有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),长沙 410083

震源定位 机器学习 神经网络 联合定位

国家基础科学中心项目国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目湖南省自然科学基金优秀青年项目有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放基金

720881014213081042204067423740762022JJ200572022YSJS16

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(3)