首页|基于噪声测井的注入剖面解释方法研究

基于噪声测井的注入剖面解释方法研究

扫码查看
随着油气田开发进入中后期,生产井测井的潜在需求增加,如何快速准确定位井下漏失位置、确定漏失量一直备受关注.噪声测井采用频谱分析技术,通过分析频率与幅度信息能够有效解决上述问题.采用小波阈值对噪声测井资料进行数据处理,根据噪声测井资料数据特征,对注入井进行定性分析,结合噪声信号的影响因素,利用噪声强度法、噪声均值法、噪声中值法、幅度面积法四种方法对注入剖面展开了定量评价解释研究.噪声测井的注入剖面解释方法于X开发单元应用,在漏失位置、窜槽等方面识别准确,四种方法与同位素测井资料响应一致,其中,噪声均值法定量评价解释结果准确率达到70%,为监测井下流体流动特征提供了可靠方法.
Research on injection profile interpretation method based on noise logging
With the development of oil and gas fields entering the middle and late stages,The potential demand for production well logging increases.How to quickly and accurately locate the location of downhole leakage and determine the amount of leakage has always attracted much attention.Noise logging uses spectrum analysis technology,which can effectively solve the above problems by analyzing frequency and amplitude information.The improved wavelet threshold method is used to process the noise logging data,which can effectively enhance the flow noise of the reservoir.According to the characteristics of the processed noise logging data,the qualitative analysis of the injection well is carried out.Combined with the influencing factors of the noise signal,The quantitative evaluation and interpretation of the injection profile are carried out by using the four methods of noise intensity method,noise mean method,noise median method and amplitude area method.The injection profile interpretation method of noise logging is applied in X development unit,and the identification of leakage position and channeling is accurate.The four methods are consistent with the response of isotope logging data.Among them,the accuracy of quantitative evaluation and interpretation results of noise mean method reaches 70%,which provides a reliable method for monitoring downhole fluid flow characteristics.

Noise loggingSpectrum analysisInjecting profileWavelet threshold

黄海涛、宋红伟、黎明、马文慧

展开 >

长江大学地球物理与石油资源学院,武汉 430100

中国石油集团测井重点实验室长江大学研究室,武汉 430100

青海油田分公司测试公司,茫崖 816499

噪声测井 频谱分析 注入剖面 小波阈值

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(5)