首页|基于测井解释模型与平均影响值法联合优化的煤层气含量预测方法

基于测井解释模型与平均影响值法联合优化的煤层气含量预测方法

扫码查看
为了进一步提高地球物理测井技术对煤层气含量的预测效果,本研究提出将煤储层含气性测井解释模型(LIM,Log Interpretation Model)参数引入到煤层气含量预测模型的构建过程中,并基于平均影响值法(MIV,Mean Impact Value)优选了支持向量机(SVM)建模输入参数.最后通过网格搜索法构建了一种用于预测煤层气含量的LIM-MIV-SVM模型,并以淮南煤田实际测井资料为例,对比分析了构建的LIM-MIV-SVM模型与测井曲线多元回归模型、常规测井SVM模型和LIM-SVM模型的煤层气含量预测效果.结果表明:LIM-MIV-SVM模型对煤层气含量的预测精度最高,其次是LIM-SVM模型和常规测井SVM模型,测井曲线多元回归模型的预测精度最低,说明机器学习方法相比于传统的测井解释方法存在优势,合理地引入煤储层测井解释参数对于提高煤层气含量的预测精度是可行的.构建的LIM-MIV-SVM模型是多源测井数据融合和输入数据集筛选共同优化的结果,能够为煤层气资源勘探及其储层评价提供技术支撑,且本研究的建模策略及思想也可广泛应用于其他机器学习建模研究领域.
Coalbed methane content prediction based on joint optimization of log interpretation model and mean impact value method
In order to further improve the prediction effect of Coalbed Methane(CBM)content by using the geophysical well logging technology,this study introduced the coal reservoir parameters calculated by Log Interpretation Model(LIM)into the construction process of the CBM content prediction model.And the input parameters of Support Vector Machine(SVM)were optimized based on the Mean Impact Value(MIV)method.Finally,a LIM-MIV-SVM model for predicting CBM content was constructed using grid search method.And the CBM content prediction effects of the LIM-MIV-SVM model were compared with multiple regression model,conventional logging SVM model and LIM-SVM model by using the actual logging data from Huainan coalfield.The application results show that the proposed LIM-MIV-SVM model has the highest prediction accuracy,followed by the LIM-SVM model and the conventional logging SVM model,and the multiple regression model has the lowest prediction accuracy.This indicates that machine learning method have advantages over traditional logging interpretation method,and introducing gas content parameters calculated by LIM reasonably is effective for improving the prediction accuracy of CBM content.The LIM-MIV-SVM model is jointly optimized through multi-source logging data fusion and input dataset selection,which can provide technical support for CBM resource exploration and reservoir evaluation.Moreover,this research method and modeling strategy can be suitable for other machine learning modeling research fields.

Log Interpretation Model(LIM)Mean Impact Value(MIV)methodSupport Vector Machine(SVM)Coalbed Methane(CBM)content prediction

白泽、谭茂金、白洋、吴海波

展开 >

安徽理工大学,矿山地质灾害防治安徽省高校重点实验室,淮南 232001

中国地质大学(北京)地球物理与信息技术学院,北京 100083

测井解释模型 平均影响值法 支持向量机 煤层气含量预测

2024

地球物理学进展
中国科学院地质与地球物理研究所 中国地球物理学会

地球物理学进展

CSTPCD北大核心
影响因子:1.761
ISSN:1004-2903
年,卷(期):2024.39(5)