首页|面向城市交通的动态知识图谱综述——构建、表示与应用

面向城市交通的动态知识图谱综述——构建、表示与应用

扫码查看
在智能交通领域中,各种信息采集设备积累了海量的多源异构数据,如车辆轨迹、道路状态、交通事件等.如何依据这些海量的交通数据进行关联整合,并利用这些数据进行辅助决策是当前面临的挑战.为应对这些挑战,知识图谱技术由于其具有强大的实体间关联建模能力,在知识挖掘、表示、管理及推理能力等方面显现出了巨大的应用潜力.首先,本文依次针对地理交通图、多模态知识图谱及动态知识图谱的构建技术进行综述,以此展示知识图谱在智能交通领域的广泛适用性.接着对智能交通领域的各类知识图谱构建方法进行介绍.其次,对智能交通领域的知识图谱表示学习技术及知识推理技术进行归纳总结.其中涵盖了多模态知识图谱表示学习的相关算法以及动态知识图谱表示学习的探讨,并展开介绍了动态交通多模态知识图谱中的补全技术和因果推理技术,对于提高智能交通系统的数据理解能力和决策推理水平具有重要的理论意义和实际应用前景.再次,归纳整理了几个应用场景下知识图谱为城市的智能决策提供重要支撑的解决方案.最后,对现有技术瓶颈进行了分析和探讨,并对未来交通知识图谱的关键技术及其辅助应用进行了展望.
Survey of Dynamic Knowledge Graph for Urban Traffic:Construction,Representation and Application
In the field of intelligent transportation,various information collection devices have produced a mas-sive amount of multi-source heterogeneous data.These data encompass various types of information,including vehicle trajectories,road conditions,and traffic incidents,soured from devices such as traffic cameras,sensors,and GPS.However,the current challenge faced by researchers and practitioners is how to correlate and integrate the massive amount of heterogeneous data to facilitate decision support.To address this challenge,knowledge graph technology,with its powerful entity-to-entity modeling ability,has shown great potential in knowledge mining,representation,management,and reasoning,making it well-suited for intelligent transportation applica-tions.In this paper,we first review the construction techniques for geographic traffic graphs,multimodal knowl-edge graphs,and dynamic knowledge graphs,demonstrating the broad applicability of knowledge graphs in the field of intelligent transportation.Secondly,we summarize relevant algorithms of multi-modal knowledge graph representation learning and discuss dynamic knowledge graph representation learning in the field of intelligent transportation.Knowledge graph representation learning technology plays a crucial role in creating high-quality knowledge graphs by capturing and organizing the relationships between entities and their attributes within the transportation domain.This technology utilizes advanced machine learning algorithms to analyze and process the heterogeneous data from various sources to extract meaningful patterns and structures.We also introduce the completion technology and causal reasoning technology in dynamic transportation multi-modal knowledge graph,which is useful for improving the data of intelligent transportation systems.Comprehension ability and de-cision-making reasoning level have important theoretical significance and practical application prospects.Third-ly,we summarize the solutions of knowledge graph that provide important support for intelligent decision-mak-ing in several application scenarios.The utilization of knowledge graphs in intelligent transportation systems fa-cilitates real-time data integration and enables correlation analysis of diverse data sources to provide a holistic view of the traffic ecosystem.This comprehensive understanding empowers decision-makers to implement tar-geted interventions and proactive measures,ultimately mitigating traffic congestion and reducing the occurrence of accidents.Through the continuous refinement and enrichment of the traffic knowledge graph,the intelligent transportation system can adapt and evolve to address emerging challenges and optimize transport networks for enhanced efficiency and safety.Finally,we analyze and discuss the existing technical bottlenecks.The future of traffic knowledge graphs and their auxiliary applications are also prospected and discussed,highlighting the po-tential impact of this important technology on intelligent transportation systems.

intelligent transportationknowledge graphknowledge representationknowledge reasoninggraph neural networkassisted decision makingurban planningtraffic management

刘奕含、宁念文、杨东霖、李伟、吴斌、周毅

展开 >

河南大学人工智能学院,郑州 450046

百度网讯科技有限公司移动生态事业群搜索策略部,北京 100193

北京邮电大学计算机学院,北京 100876

智能交通 知识图谱 知识表示 知识推理 图神经网络 辅助决策 城市规划 交通管理

国家自然科学基金项目国家重点研发计划政府间国际科技创新合作专项河南省科技攻关计划河南省科技攻关计划河南省高等学校重点科研项目

621760882023YFE011250022210221006722210252002822A120001

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(4)
  • 14