首页|综合局部莫兰指数和PageRank算法的网络空间资源节点隐喻可视化表达

综合局部莫兰指数和PageRank算法的网络空间资源节点隐喻可视化表达

扫码查看
可视化是一种非常有效的网络空间资源分析方式,通过借助点线面、符号、地形等形象映射抽象数据,可以更好地管理、维护和优化网络空间.考虑到网络空间资源节点在网络中的空间相关性和重要性,本文借助隐喻地图思想,将网络空间中资源节点视为本体,传统地理空间中山峰和等高线作为喻体进行可视化表达.首先,通过节点之间的拓扑关系构建空间权重矩阵和转移矩阵,以此计算出节点的局部莫兰指数和PageRank值.为了更全面地综合考虑节点在局部和全局范围内的空间相关性和重要性,使局部莫兰指数进行标准化处理与PageRank值达到相同的取值范围后将二者结合得到综合评价指标(PI值);然后,将网络空间资源节点根据FR算法围绕重要程度最高的节点进行布局,通过PI值赋予节点高度值和大小;最后,借助隐喻地图的思进行可视化表达.实验数据表明,相较于传统的节点评价方法,该方法将用于衡量地理空间数据中是否存在空间聚集现象的莫兰指数引入到网络空间,可以突出节点中属性值较高并且与其相连节点属性值也高的节点;同时,基于隐喻地图思想进行可视化表达可以直观表现出节点在网络空间中的所处地位以及与其他节点间的相互关系,并且在针对格式化数据进行渲染时,随着网络规模的扩大隐喻地图效率优于传统拓扑图.
Metaphor Representation of Resource Nodes in Cyberspace Based on Local Moran Index and PageRank Algorithm
Visualization serves as an incredibly effective method for analyzing and understanding cyberspace resources.By leveraging elements such as points,lines,surfaces,symbols,and terrain,it offers valuable insights for the management,maintenance,and optimization of cyberspace by transforming abstract data into tangible and comprehensible forms.In this context,this paper recognizes the significance of spatial relationships and the importance of resource nodes in the network and adopts the concept of a metaphorical map as a means of visualization.It draws an analogy between the resource nodes in cyberspace and the metaphorical representation of peaks and contouring lines in traditional geographic space,facilitating visual expression and understanding.The methodology proposed in this paper involves constructing spatial weight matrices and transfer matrices based on the topological relationships among nodes in cyberspace.These matrices enable the computation of indices such as the Moreland index and PageRank value for each node,which are vital metrics for evaluating the local importance of nodes within the network.To comprehensively assess the spatial correlation and significance of nodes on both local and global scales,the local Moran index is standardized,and the PageRank values are transformed to a consistent range.These standardized indices are then combined to derive a comprehensive evaluation index called the PI value.Subsequently,the network space resource nodes are arranged around the most prominent node utilizing the FR algorithm.The PI value guides the assignment of height values and sizes to each node,facilitating their visual representation.Finally,the visualization is performed using a metaphorical map that allows for an intuitive depiction of the nodes'positions in the network space and their relationships with other nodes.Our experimental results demonstrate that this method effectively incorporates the Moreland index,commonly employed to measure spatial aggregation in geospatial data,into the network space analysis.As a result,the method effectively highlights nodes and their interconnected nodes with higher attribute values.Furthermore,the visual representation based on the metaphorical map provides a natural and intuitive understanding of the nodes'positions and their interconnections in network space.It offers a means of effectively communicating complex information about the network's structure and topology.Moreover,when rendering formatted data,the efficiency of the metaphorical map exceeds that of traditional topology maps,particularly as the scale of the network expands.The metaphorical map proves to be a powerful tool for visualizing and comprehending the intricate relationships within cyberspace resources.

cyberspacecyberspace mappingMoran indexMoran scatter plotPageRank algorithmcompre-hensive evaluationmetaphorical mapvisualization

齐凯、张衡、周杨、刘一帆、李庆祥

展开 >

战略支援部队信息工程大学地理空间信息学院,郑州 450001

网络空间 网络空间测绘 莫兰指数 莫兰散点图 PageRank算法 综合评价 隐喻地图 可视化

国家重点研发计划国家重点研发计划

2016YFB0801301-22016YFB0801303

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(5)
  • 41