首页|卡尔曼滤波融合多源排放清单算法下的粤港澳大湾区FFCO2排放时空演变格局研究

卡尔曼滤波融合多源排放清单算法下的粤港澳大湾区FFCO2排放时空演变格局研究

扫码查看
在卫星碳观测用于区域减排存在技术壁垒的背景下,全球尺度的高分辨率化石燃料二氧化碳(FFCO2)排放清单成为区域FFCO2排放研究的主要数据来源,但现有的全球尺度FFCO2排放清单用于区域研究仍存在显著的不确定性.为此,本研究定量分析3种全球尺度的高分辨率FFCO2排放清单(ODIAC 2020b,EDGAR v6.0,PKU-CO2-v2)用于区域尺度研究的差异性和变异性,然后基于卡尔曼滤波将3组数据进行特征融合,探讨了粤港澳大湾区FFCO2排放的时空演变格局.结果表明:①当前FFCO2排放清单数据间存在着显著的差异性和变异性特点,以大湾区为例,在最佳表征空间分辨率3 km×3 km下,区域内网格单元的平均差异性达到140%,变异系数达到16.3%,单一的全球尺度FFCO2排放清单数据用于区域或城市的FFCO2排放研究结果不准确;②经卡尔曼滤波融合重构的2000-2018年长时间序列的新数据显示:卡尔曼滤波融合结果的不确定性由±15%~20%减少至±10%;③2000-2018年,大湾区FFCO2排放的总体布局是广深港澳中心高排放,向外围区域逐渐降低为低排放区,并形成深圳、香港→广州→佛山、东莞→中山的排放转移路径.本文提出的区域FFCO2排放研究思路在大湾区进行了示范应用,同时可应用于其他区域和城市.本研究的结论将为大湾区能源、资源优化布局提供科学依据,对低碳转型及高质量发展和"美丽湾区"建设具有重要意义.
Spatiotemporal Evolution Pattern of FFCO2 Emissions in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Kalman Filter Using Multi-Source Emission Inventory Fusion
Due to technical gaps in using satellite carbon observations for regional emission reduction,high-resolution,global-scale Fossil Fuel Carbon Dioxide(FFCO2)emission inventories have become the main data sources for regional FFCO2 emission research.However,there are still significant uncertainties in use of existing global-scale FFCO2 emission inventories for regional research.Therefore,this paper quantitatively analyzed the differences and variabilities of high-resolution FFCO2 emission inventories(ODIAC 2020b,EDGAR v6.0,and PKU-CO2-v2)at the regional scale and fused these three inventories based on Kalman filtering algorithm.Then,this paper explored the spatial and temporal evolution pattern of FFCO2 emissions in the Guangdong-Hong Kong-Macao Greater Bay Area(GBA).The results show that:(1)There were significant differences and variability among the current FFCO2 emission inventories.Taking the GBA as an example,under the optimal representation spatial resolution of 3 km×3 km,the average difference of grid cells within the region reached 140%,and the coefficient of variation was 16.3%.The use of a single global scale FFCO2 emission inventory data for regional or urban FFCO2 emission studies resulted in inaccurate results;(2)The reconstructed long term data from 2000 to 2018 using Kalman filter showed that the uncertainty decreased from±15%~20%to±10%;(3)From 2000 to 2018,the overall pattern of FFCO2 emissions in the GBA was characterized by high emissions in Guangzhou,Shenzhen,Hong Kong,and Macao,low emission areas in the peripheral areas,and an emission transfer path from Shenzhen,Hong Kong → Guangzhou → Foshan,Dongguan → Zhongshan.The approach for regional FFCO2 emissions proposed in this paper is demonstrated in the GBA and is applicable to other regions and cities.The conclusions of this research will provide a scientific basis for the optimal layout of energy and resources in the Greater Bay Area,which is of great significance for low-carbon transformation,high-quality development,and the construction of Beautiful Bay Area.

Guangdong-Hong Kong-Macao Greater Bay Arearegional FFCO2 emissionsspatial-temporal characteristicsKalman Filter fusiondifferencesvariabilityemission inventoryuncertainty

赵群群、赵静、张灵先、王拓、杨腾飞、赵琛、牟乃夏

展开 >

山东科技大学测绘与空间信息学院,青岛 266590

中国科学院空天信息创新研究院数字地球重点实验室,北京 100094

国家对地观测数据中心,北京 100094

粤港澳大湾区 区域FFCO2排放 时空特征 Kalman滤波融合 差异性 变异性 排放清单 不确定性

中国科学院国际合作局国际伙伴计划国际碳卫星观测数据分析合作计划

131211KYSB20180002

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(6)
  • 30