首页|松嫩典型黑土区耕地黑土层厚度数字制图方法比较

松嫩典型黑土区耕地黑土层厚度数字制图方法比较

扫码查看
黑土层厚度与农田土壤肥力和质量密切相关,准确刻画东北松嫩典型黑土区耕地黑土层厚度的空间分布对黑土地保护和农业可持续发展具有重要意义.然而,常用的预测模型在平原漫岗地区进行数字制图具有较大的难度,如何准确预测黑土层厚度的空间分布特征是亟待解决的问题.选取东北地区松嫩典型黑土区作为研究区,以研究区内106个剖面点和45个环境因子为基础数据,通过因子重要性排序和相关性剔除法筛选变量,利用多元线性回归(Multiple Linear Regression,MLR)、随机森林(Random Forest,RF)、梯度提升树(Gradient Boosting Decsion Tree,GBDT)、极端梯度提升(Extreme Gradi-ent Boosting,XGBoost)、随机森林回归克里格(Random Forest-Regression Kriging,RF-RK)和堆叠泛化模型(Stacking)对黑土层厚度进行空间预测制图,评估不同模型预测精度并研究影响黑土层厚度空间分布的最优协变量,并基于较优模型绘制东北黑土区耕地黑土层厚度分级图.结果表明:①Stacking组合多种模型的优点,预测性能表现最佳(R2=0.47,MAE=21.02 cm,RMSE=27.12 cm),其次是RF-RK和RF;②通过变量筛选剔除低贡献度的环境变量后,不同模型的R2平均提高0.11,其中MLR提升幅度最大为0.32;③不同模型预测的松嫩典型黑土区黑土层厚度空间分布趋势基本一致,60 cm以上的黑土层主要分布在研究区的东北部和东南部,而30 cm以下的黑土层主要分布在研究区的西南部.在平原漫岗地区,RF-RK和Stacking可以作为黑土层厚度预测的有效方法,总初级生产力(GPP)、坡度坡长因子(LS)和地表温度最大值合成(LSTm)是模型中最重要的解释变量,且黑土层厚度的空间分布信息能为黑土区耕地黑土保护和农业可持续发展提供数据支持.
Comparison of Digital Mapping Methods for the Thickness of Black Soil Layer of Cultivated Land in Typical Black Soil Area of Songnen Plain
The thickness of black soil layer is closely related to the soil fertility and quality of agricultural soils.Accurately describing the spatial distribution of the thickness of the cultivated black soil layer in the typical black soil area of Songnen in Northeast China is of great significance.It contributes to the protection of black soil and promotes the sustainable development of agriculture.However,the commonly used predictive models are difficult to apply when trying to map digital soils in flat areas.How to accurately predict the spatial distribution characteristics of the thickness of black soil layer is an urgent problem that needs to be solved.The typical black soil area of Songnen in Northeast China was selected as the research area.Based on the basic data of 106 profile points and 45 environmental factors in the study area,the variables were screened by factor importance ranking and correlation elimination method.Multiple Linear Regression(MLR),Random Forest(RF),Gradient Boosting Decision Tree(GBDT),Extreme Gradient Boosting(XGBoost),Random Forest-Regression Kriging(RF-RK),and Stacking methods were used to predict the thickness of black soil layer.The predictive accuracy of different models was evaluated and the optimal covariates influencing the spatial distribution of the thickness of black soil layer were studied.Based on the best model,the black soil layer thickness classification map of farmland in the black soil area of northeast China was drawn.Our results showed that the Stacking method combined the advantages of several models,and its prediction performance was the best(R2=0.47,MAE=21.02 cm,RMSE=27.12 cm),followed by RF-RK and RF.After eliminating the environmental variables with low contribution through variable screening,the R2 of different models increased by an average of 0.11,with a maximum increase of 0.32 in MLR.The spatial distribution trend of the thickness of black soil layer predicted by different models was generally consistent.The black soil layer above 60 cm was mainly distributed in the northeast and southeast of the study area,while the black soil layer below 30 cm was mainly distributed in the southwest of the study area.In the plain area,RF-RK and Stacking can be used as effective methods for predicting the thickness of black soil layer.Gross Primary Productivity(GPP),Slope Length and Steepness Factor(LS),and Land Surface Temperature Maximum(LSTm)were the most important explanatory variables in the model.The spatial distribution information of the thickness of black soil layer can provide data support for black soil protection and agricultural sustainable development in the black soil region.

thickness of black soil layerdigital soil mappingvariable selectionmachine learningrandom for-est-regression krigingstacking generalization modelspatial differentiation characteristicsoptimal covariates

郭俊辉、刘峰、徐胜祥、高璐璐、赵治东、胡文友、于东升、赵玉国

展开 >

中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,南京 210008

中国科学院大学,北京 100049

安徽理工大学空间信息与测绘工程学院,淮南 232001

中国科学院南京土壤研究所土壤环境与污染修复重点实验室,南京 210008

展开 >

黑土层厚度 数字土壤制图 变量筛选 机器学习 随机森林回归克里格 堆叠泛化模型 空间分异特征 最优协变量

中国科学院战略性先导科技专项中国科学院战略性先导科技专项国家自然科学基金国家自然科学基金国家重点研发计划

XDA28010100XDA2801010242071072422713692021YFD1500202

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(6)
  • 62