首页|基于多层复杂网络的地理多元流测度与社区识别研究

基于多层复杂网络的地理多元流测度与社区识别研究

扫码查看
物质、信息、能量等在不同空间位置之间的移动和交换形成了地理流,多种形式的地理流相结合构成了地理多元流,如何从中挖掘出丰富的信息是迫切需要解决的问题.本文以基于GDELT数据的国际关系研究为应用背景,探索基于多层复杂网络的地理多元流测度与社区识别方法.首先利用多路复用网络模型构建了包括媒体层、立法执法层、叛乱层的地理多元流网络,随后研究了地理多元流网络的MultiRank中心性、重叠度中心性、多重参与系数与Z分数等测度方法,并进行了全球尺度的社区识别分析,最后分析了网络的时序变化特征.研究发现:①地理多元流网络比单一地理流网络蕴含更加丰富的信息,能够从更综合的角度体现系统的特征;②地理多元流网络的特征能够体现多种单一要素的共同作用结果;③多层复杂网络方法能够直接表征地理多元流整体的特性,避免了综合分析产生的误差;④将地理多元流网络与单一地理流网络结合分析,能够从不同尺度得出更加全面的分析结果.本文的研究对于拓展地理多元流时空分析方法、探索国际关系时空大数据分析方法具有一定的参考意义.
Research on Measurement and Community Detection of Geographic Multiple Flow Based on Multi-layer Network Methods
Geographical flows are formed by the movement and exchange of substances,information,energy,and other elements between different locations. The Geographical Multiple Flow (GMF) is the combination of various geographical flows. Human activities such as international trade,population migration,and air transportation have formed multiple global scale GMF,which will provide new information for the study of global issues like international relation. GMF is composed of single geographic flows,containing various types of information. It can effectively compensate for the shortcomings of single geographic flows and reveal the patterns that cannot be reflected by them. Thus,how to extract information from it is an urgent problem. The Global Database of Events,Language,and Tone (GDELT) is a real-time updated global news database. It records all events reported by global news media since January 1st,1979,extracting key information including participants,locations,event types,and emotional tendencies through text analysis. The paper takes the international relation research using GDELT data as the application background,exploring the measurement and community detection methods of GMF. We use networked methods to analyze GMF. Multi-layer network methods are applied to measure the structure of GMF,and the feasibility is verified on the GDELT dataset. Firstly,we select data from GDELT Event Database to construct single geographic flow networks including media networks,legislature networks,and insurgent networks,and then uses them to construct GMF networks based on multiplex network. Secondly,we use multi-layer network methods for measurement and community. For calculating GMF networks,the corresponding single-layer network methods are also used to extract features of each layer. Finally,the temporal variation characteristics of the GMF networks are analyzed. We take one year as a cycle to analyze the similarities and differences of network features at different times and discover the evolution of things reflected in it. Results show that:① GMF network contains more information than single geographic flow network,which can reflect the characteristics of the system from a more comprehensive perspective;② The characteristics of GMF can reflect the combined effects of multiple elements;③ The multi-layer network methods can directly characterize the overall features of geographic multiple flows,avoiding errors caused by comprehensive analysis;④ Combining GMF networks and geographic flow networks can yield more comprehensive results from different scales. This research provides reference for the development of GMF spatiotemporal analysis methods and the exploration of spatiotemporal big data analysis methods for international relation.

Geographical Multiple Flow (GMF)multi-layer complex networkGDELTinternational relationnetworked data miningmeasurement analysiscommunity detection

梁天祺、秦昆、阮建平、喻雪松、周扬、刘东海、邢玲丽

展开 >

武汉大学遥感信息工程学院,武汉 430079

武汉大学政治与公共管理学院,武汉 430072

地理多元流 多层复杂网络 GDELT 国际关系 网络化挖掘 测度分析 社区识别

国家自然科学基金项目

42171448

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(8)