首页|室内视角下减弱点云空洞影响的三维可视性分析方法

室内视角下减弱点云空洞影响的三维可视性分析方法

扫码查看
可视性是指在一定环境条件下,观察者从特定位置所能看到的空间范围.针对现有基于点云数据的可视性分析方法主要聚焦于室外视角,同时未充分考虑点云空洞的问题,提出一种减弱点云空洞影响的室内视角可视性分析方法.首先,将预处理得到的窗户中心点看作视点,以视点为中心,理论视距为半径,构建半球形视域空间.然后将视域空间内的点投影至深度图像形成视域图像,其像素深度值即为可视视距.通过分析视域空间的可视范围,模拟室内通过窗户观测到的外部场景.在这个过程中,点云空洞会造成视距错误,利用空间属性对视域空间分类,并根据不同类别视域空间的地物连续性和遮挡关系提出视距校正方法,以减弱点云空洞对可视空间体积的影响.最后,利用视点处的可视空间体积指数进行可视性分析,并与现有基于体素、基于表面的可视性分析方法以及人工评价进行比较.结果表明,本方法与人工评价的结果具有更好的一致性,能够更有效地分析建筑内部的可视性,为城市规划、景观设计等相关领域提供了一种全面可靠的可视性分析策略.
A 3D Visibility Analysis Method for Reducing the Influence of Point Cloud Voids from an Indoor Perspective
Visibility refers to the spatial extent that an observer can see from a specific location under certain environmental conditions.Existing visibility analysis methods,based on point cloud data,mainly focus on the outdoor perspective and do not fully consider the problem of point cloud voids.To fill the gaps in the current indoor visibility research,this paper proposes an indoor 3D visibility analysis method based on point cloud data from UAVs and ground survey data.Our method reduces the influence of point cloud voids and aims to improve the accuracy of the visibility analysis.The method presented in this paper is divided into three parts:data preprocessing,visual space construction,and visual distance correction.In the data preprocessing stage,UAV point cloud data is used to extract the building roof contour and DEM,which are utilized for subsequent visual distance correction.Ground-based point cloud data is then used to extract the center points of the windows on the building façade,which serve as observation viewpoints.In the viewspace construction stage,the viewpoint is taken as the center,and the theoretical visual distance is taken as the radius.Points within the theoretical visual distance are selected to construct a hemispherical viewspace.The points in the visual field space are projected onto the depth image to form the visual field image.The visual field of view is then calculated,and the visual range of the field of view space is analyzed to simulate the external scene observed through the window in the room.During this process,point cloud voids can lead to errors in the visual range.Specifically,when the positions of the scanning center and the viewpoint differ significantly,missing parts may appear in the visible space,and the pass-through errors may also occur near the viewpoint due to insufficient point cloud density.In the sight distance correction stage,this paper categorizes the viewspace using spatial attributes and proposes a sight distance correction method to attenuate the effect of point cloud voids on the volume of the visible space by considering the feature continuity and occlusion relationship within different categories of the viewspace.Finally,visibility analysis is conducted using the visual space volume index at the viewpoint and is compared with the existing voxel-based and surface-based visibility analysis methods,as well as a manual evaluation.The DTW distances for comparisons are 48 247,and 240,respectively.The results show that the proposed method has better consistency with manual evaluation results.It can analyze the visibility of indoor environments more effectively,and is also applicable to outdoor visibility analysis.This method provides a comprehensive and reliable visibility analysis strategy for urban planning,landscape design,and other related fields.

point cloud voidsindoor viewpointvisual field spacevisual field imagevisual distance correctionvisibility analysis

陈茂霖、朱飞宇、安奥博、潘建平

展开 >

重庆交通大学智慧城市学院,重庆 400074

自然资源部智能城市时空信息与装备工程技术创新中心,重庆 401120

山地城市时空信息重庆市重点实验室,重庆 400074

点云空洞 室内视角 视域空间 视域图像 视距校正 可视性分析

宁夏回族自治区重点研发计划重庆市研究生联合培养基地建设项目重庆市自然科学基金

2022CMG02014JDLHPYJD2019004CSTB2024NSCQ-MSX0652

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(9)