首页|基于轨迹数据的出租车潜在充电需求估计及时空特征分解

基于轨迹数据的出租车潜在充电需求估计及时空特征分解

扫码查看
在大城市出租车队电动化转型过程中,出租车充电需求呈现出充电负荷高、时空分布随机性强的特征.为精确估计出租车队完全电动化转型后的充电需求,本文提出了一种仅基于燃油出租车轨迹数据的潜在充电需求识别概念模型以及基于轨迹地图匹配的二叉树实现算法,为电动化转型滞后地区提供了新的充电需求估计范式.本文使用890辆带有电池状态字段的电动出租车轨迹数据对模型和算法进行验证,结果表明,充电区段数量、充电需求电量等指标的估计误差小于6.5%.此外,模型和算法在不同电池电量消耗阈值θ和不同空间尺度(500、1000和10000 m栅格)下具有较高的时空分布估计精度.在此基础上,本文提出以北京市六环内真实道路网为空间分析单元,运用奇异值分解算法对潜在充电需求时空矩阵进行分解降维,以挖掘潜在充电需求的时空特征模式.最后,运用北京市连续3 d共1913辆出租车轨迹数据进行案例研究,结果表明,北京市出租车潜在充电需求的空间分布呈现出明显的重点区域、关键通道聚集性特征,与该区域的高出行活动强度以及长途出行相关的高密度充电需求高度吻合.分解后的充电需求呈现出常态化充电需求为主导、上下午异质性充电需求以及工作时段和非工作时段异质性充电需求为辅的时空结构特征.该分析方法有助于挖掘潜在充电需求的空间分布结构特征及时空耦合关系,为出租车队电动化转型下的充电基础设施中长期规划、电网负荷调度调节和充电需求管理等提供决策参考.
Estimation of Potential Charging Demand for Taxis and Spatiotemporal Feature Decomposition Based on Trajectory Data
In the transition of urban taxi fleets toward electrification in large cities,the charging demand of taxis exhibits characteristics of high charging load and strong spatiotemporal randomness,with a noticeable mismatch between charging supply and demand in time and space.To accurately estimate the potential charging demand post-the full electrification of the taxi fleet,this study introduces a bottom-up conceptual framework and a binary tree algorithm based on trajectory map matching,leveraging fuel taxi trajectory data exclusively.This approach provides a new paradigm for estimating charging demands in regions lagging behind in the electrification transition.The model and algorithm are validated using trajectory data from 890 electric taxis with battery status fields (State of Charge,SOC).Results show that the estimation errors of indicators such as the number of charging segments and charging amount are less than 6.5%.Moreover,the model also exhibits high spatiotemporal distribution estimation accuracy under different parameter settings (battery depletion threshold θ) and spatial scales (with grid sizes of 500 m,1000 m,and 10000 m),ensuring their applicability in real-world scenarios.Specifically,the temporal distribution error of charging amount is less than 8.5% in the best-case scenario,and over half of the charging amount within 500 m grids has a spatial distribution error less than 0.3,with 59% of the 500 m grids having an estimated error of charging segment count less than 0.3.Building upon this,the Singular Value Decomposition (SVD) algorithm is used to decompose and reduce the dimensionality of the spatiotemporal matrix of charging demands,identifying spatiotemporal patterns of potential charging demands within the real road network of Beijing's Sixth Ring Road at road level.Finally,a case study is conducted using trajectory data from 1913 taxis in Beijing over three consecutive days from March 9th (Monday) to March 11th (Wednesday) in 2019,and the results indicate that the spatial distribution of potential charging demands for taxis in Beijing exhibits prominent clustering features in key areas and critical corridors,corresponding to high-density charging demands associated with residents'high activity levels and long-distance travel.The decomposed charging demands reveal a spatiotemporal structural pattern dominated by regular charging demands,with supplementary heterogeneity in charging demands between morning and afternoon,as well as during working and non-working hours.This analysis method assists in uncovering the spatial distribution structural characteristics of potential charging demand and spatiotemporal coupling relationships,providing decision-making references for long-term planning of charging infrastructure,grid load scheduling,and charging demand management in the electrification transformation of taxi fleets.

urban traffictraffic electrificationcharging demandbinary treemap matchingsingular value decompositionspatiotemporal characteristicstrajectory data

马瑞晨、王聘玺、黄爱玲、奇格奇、徐笑涵

展开 >

北京交通大学交通运输学院,北京 100044

香港理工大学土地测量及地理资讯学系,香港 999077

清华大学车辆与运载学院汽车安全与节能国家重点实验室,北京 100084

北京交通发展研究院城市交通节能减排检测与评估北京市重点实验室,北京 100161

展开 >

城市交通 交通电动化 充电需求 二叉树 地图匹配 奇异值分解 时空特征 轨迹数据

国家重点研发计划项目国家自然科学基金项目国家自然科学基金项目

2023YFB43019015247233672371021

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(10)