首页|轨迹驱动的多层时空图神经网络交通路况短期预测

轨迹驱动的多层时空图神经网络交通路况短期预测

扫码查看
城市交通路况的短期预测是支持交通管理、在线导航的基础应用.出租车轨迹作为低成本、高时空覆盖率的交通监测数据类型,已广泛用于提取实时路况,支持路况短期预测.然而出租车轨迹时空覆盖极不均衡,导致大量的路段和时段轨迹数据缺失或覆盖率不足,难以直接基于轨迹数据精确估计全路网所有路段全天候的交通状态,精度和可靠性都不能满足实时交通路况估计和短期预测的需要.因而基于不均衡轨迹数据的全路网交通路况在线短期预测成为大城市交通精细化监测和管理的一大技术难题.本文针对轨迹数据的时空分布不均衡问题,设计了路网的动态分层方法,将城市路网根据轨迹的时空分布划分为多层路网,包括轨迹质量较好的主干路网以及轨迹分布较为稀疏的次级路网.在分层路网基础上,我们提出轨迹驱动的多层时空图神经网络路况短期预测方法,依托不同路网层级建立多层时空图神经网络,设计顾及轨迹时空分布的层内和层间消息传递机制,基于因果膨胀卷积和图注意力描述路网之间复杂的路况时空关联.在路况关联表征模型基础上,设计实现了表征-预测一体化的集成端到端图神经网络预测模型,可同时对全路网所有路段的速度和状态进行在线预测,有效提升轨迹分布稀疏路段的路况预测质量.通过武汉市大型路网的真实轨迹数据测试,本方法比基线方法在预测精度上有显著改善,特别是在轨迹数据缺失较严重的路段上取得了较好的预测性能,同时训练效率也有显著提升,表明所提出的多层时空图神经网络预测方法能有效地应对轨迹分布不均衡导致的路况预测难题.
A Trajectory-Driven Multi-Layer Spatiotemporal Graph Neural Network for Predicting Short-Term Urban Traffic State
The short-term prediction of urban traffic states serves as a fundamental application supporting traffic management and online navigation.Floating car trajectory data,characterized by low cost and high spatio-temporal coverage,has been widely employed for real-time traffic state extraction,thereby facilitating short-term traffic prediction.However,the spatio-temporal coverage of floating car trajectories is extremely uneven,resulting in a significant amount of missing or insufficient coverage of road networks over many time periods.It is difficult to accurately estimate the traffic states of all segments of the entire road network directly using the trajectory data of floating cars.The accuracy and reliability cannot meet the needs of real-time traffic state estimation and short-term prediction.This issue therefore poses a significant technical challenge for online short-term prediction of traffic states based on uneven trajectory data across the entire road network in large cities,hindering the refinement of traffic monitoring and management.To address the issue of uneven spatiotemporal distribution in trajectory data,this study proposes a dynamic layering method for the road network,dividing it into multiple layers based on the spatio-temporal distribution of trajectories,including a main road network with high-quality trajectories and other secondary road networks with sparse trajectory distributions.Building upon the layered road network,we propose a trajectory-driven multi-level spatio-temporal graph neural network method for short-term traffic state prediction.Leveraging the hierarchical structure of road networks,the proposed prediction method incorporates intra-and inter-layer message passing mechanisms that consider the spatio-temporal distribution of trajectories.We apply dilated causal convolution and graph attentional mechanisms to describe the complex spatio-temporal correlations of traffic states among road networks.Based on the correlation representation,we develop a unified graph neural network prediction model that integrates "representation" and "prediction" into an end-to-end learning scheme.The proposed method enables online prediction of speed and congestion state of all road segment in the road network simultaneously,significantly enhancing the predictive performance of traffic state for road segments with sparse trajectories.Through testing on real trajectory data from the large road network of Wuhan City,the proposed method showcases a notable improvement in prediction accuracy compared to recent popular baseline methods,particularly achieving satisfactory performance in segments with severe trajectory data deficiencies.The training efficiency is also significantly improved.Experimental results indicate that the proposed multi-level spatio-temporal graph neural network prediction method can effectively handle the prediction challenges caused by the uneven distribution of trajectories.

traffic stateshort-term predictionmulti-layer spatiotemporal graph neural networktrajectoryroad network partitioncorrelation representation of traffic statemessage passing

彭锦辉、张功凯、王彤、王培晓、张彤

展开 >

武汉大学测绘遥感信息工程国家重点实验室,武汉 430070

中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101

交通路况 短期预测 多层时空图神经网络 轨迹 路网分层 路况关联表征 消息传递

武大-华为空间信息技术创新实验室2023年开放基金项目

2024

地球信息科学学报
中国科学院地理科学与资源研究所

地球信息科学学报

CSTPCD北大核心
影响因子:1.004
ISSN:1560-8999
年,卷(期):2024.26(10)