首页|双碳目标下基于贝叶斯改进深度学习算法的微网主从博弈调度优化

双碳目标下基于贝叶斯改进深度学习算法的微网主从博弈调度优化

扫码查看
风机、光伏和负荷的不确定性及多主体利益的不协调,给微网调度优化带来了挑战,提出基于BNN-DL源荷预测的微网多主体多目标协调调度优化模型.首先深度神经网络融合贝叶斯法完成历史数据、气象因素和源荷的非线性关系映射,实现源荷精准预测.其次考虑微网经济性与能源利用率,提出微网日前与实时两阶段模型,日前阶段以储能运行、负荷调度、电能交易成本最低为目标构建模型进行优化.实时阶段为有效协调微网电能交互,建立微网发电与用户间的Stackelberg博弈模型,同时通过发电方非合作博弈和用户方演化博弈模拟电能价格和购电需求策略,并证明存在均衡解,然后运用反向变异麻雀搜索算法对两阶段模型进行求解.最后通过算例仿真分析,结果表明所提方法具有较好的自适应性,能够提高微网经济效益和能源利用率.
Scheduling Optimization of Master-slave Game in Microgrid Based on Bayesian Improved Deep Learning Algorithm under Dual Carbon Objective
Uncertainties in wind turbines,photovoltaic systems,and loads,along with the lack of coordination among multiple stakeholders,pose challenges to the optimization of microgrid dispatch.A multi-agent,multi-objective coordinated dispatch optimization model for microgrids is proposed based on BNN-DL source-load forecasting.Firstly,a deep neural network integrated with Bayesian methods is employed to map the nonlinear relationships among historical data,meteorological factors,and source-load,achieving accurate source-load forecasting.Secondly,considering the economics and energy utilization of microgrids,a two-stage model for day-ahead and real-time optimization is proposed.In the day-ahead stage,the model is optimized with the objective of minimizing the costs of energy storage operation,load dispatch,and electricity trading.In the real-time stage,to effectively coordinate microgrid energy interactions,a Stackelberg game model is established between microgrid generation and users.Additionally,non-cooperative games among generators and evolutionary games among users are employed to simulate electricity pricing and purchasing strategies,proving the existence of equilibrium solutions.The reverse mutation sparrow search algorithm is then used to solve the two-stage model.Finally,simulation analysis through case studies shows that the proposed method exhibits good adaptability,improving the economic benefits and energy utilization efficiency of microgrids.

Dual carbon objectivedeep learningBayesian algorithmmicrogrid scheduling optimizationmaster-slave game

夏懿、马龙、吴舒婷、马利东、孔巧玉

展开 >

国网临夏供电公司 临夏 731100

双碳目标 深度学习 贝叶斯算法 微网调度优化 主从博弈

2024

电气工程学报
机械工业信息研究院

电气工程学报

CSTPCD北大核心
影响因子:0.121
ISSN:2095-9524
年,卷(期):2024.19(2)
  • 21