首页|城轨电车的多维度行驶工况构建

城轨电车的多维度行驶工况构建

扫码查看
为准确反映城轨电车的瞬时行驶特征,提出一种基于多维度状态空间的工况构建方法.首先,参考电动汽车领域的标准测试规程以及结合城轨电车的短行程行驶特征组建样本数据库,提取出特征参数中反映行驶特征累计贡献率最高的参数以进行降维,并按照得分矩阵的参数风格划分短行程类型;其次,以贡献率最高的三个样本参数作为输入,构建电车运行状态多维度状态转移概率矩阵,采用累积泊松分布函数与蒙特卡洛采样相结合的方法生成随机数确定下一时刻状态,以获取实时工况;最后,对不同维度下构建的工况进行对比分析.结果表明,三维状态空间下构建的各特征参数相对样本平均值的偏差和运行速度瞬态误差最低;速度和需求功率历程对运行场景的时空相关性和鲁棒性最强;电车续驶里程相较于传统一维和改进二维方法分别提升了93.5%和23.9%;验证了提升马尔科夫链维度对推演城轨电车实际工况的有效性和优越性.
Construction of Multidimensional Operation Conditions for Urban Rail Transit Tram
In order to accurately reflect the instantaneous driving characteristics of energy storage tram,a multi-dimensional Markov chain based condition construction method is proposed.Firstly,the data of Beijing modern tram West Suburban line is used to establish specimen data pool,and extract the three parameters that reflect the highest contribution rate of driving characteristics from the feature parameters to reduce the dimension,and divide the short journey types according to the parameter style of the score matrix.Secondly,construct Markov state transition space with train running speed,average acceleration and road slope as inputs.Exercising the way of conjunction spread function with stochastic sampling to form stochastic numbers to emerge the next time condition,so as to obtain the real-time condition.Finally,a comparative analysis of the different dimensions of the construction of urban tram working conditions.The simulation outcome indicates that the offset of feature arguments from the average value of the sample and the transient error of the running speed are the lowest in the three-dimensional state space.The speed and power history have the strongest spatiotemporal correlation and robustness to the operation scenario.Compared with the traditional one-dimensional method and the improved two-dimensional method,the driving range of tram increased by 93.5% and 23.9%,respectively.The effectiveness and superiority of improving the dimension of Markov chain to deduce the actual working conditions of trams are verified.

Urban rail transit tramconditions constructionmultidimensional Markov chainstate transition probability matrix

张浩然、刘玉涛、闫晓夏、高明显、冷全超、高锋阳

展开 >

铁科院(深圳)研究设计院有限公司 深圳 518057

兰州交通大学自动化与电气工程学院 兰州 730070

城轨电车 工况构建 多维马尔科夫链 状态转移概率矩阵

中国铁道科学研究院集团有限公司科研开发基金资助项目

2022YJ295

2024

电气工程学报
机械工业信息研究院

电气工程学报

CSTPCD北大核心
影响因子:0.121
ISSN:2095-9524
年,卷(期):2024.19(2)
  • 10